Responder
Here are the simplified solutions for the integrals:
1. \( \int (x^{2} + 3x - 2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C \)
2. \( \int \frac{1}{(3x + 5)^{4}} \, dx = -\frac{1}{9(3x + 5)^{3}} + C \)
3. \( \int \frac{1}{(x + 1)^{3}} \, dx = -\frac{1}{2(x + 1)^{2}} + C \)
4. \( \int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C \)
5. \( \int x(3x - 5)^{4} \, dx = \frac{(3x - 5)^{6}}{54} + \frac{243x^{5} - 2025x^{4} + 6750x^{3} - 11250x^{2} + 9375x - 3125}{9} + C \)
6. \( \int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C \)
7. \( \int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C \)
8. \( \int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C \)
These are the simplified indefinite integrals for each of the given expressions.
Solución
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \left(x^{2}+3x-2\right) dx\)
- step1: Use properties of integrals:
\(\int x^{2} dx+\int 3x dx+\int -2 dx\)
- step2: Evaluate the integral:
\(\frac{x^{3}}{3}+\int 3x dx+\int -2 dx\)
- step3: Evaluate the integral:
\(\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\int -2 dx\)
- step4: Evaluate the integral:
\(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x\)
- step5: Add the constant of integral C:
\(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{1}{(3 x+5)^{4}} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{1}{\left(3x+5\right)^{4}} dx\)
- step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\)
\(\int \frac{1}{\left(3x+5\right)^{4}}\times \frac{1}{3} dt\)
- step2: Simplify:
\(\int \frac{1}{3\left(3x+5\right)^{4}} dt\)
- step3: Use the substitution \(t=3x+5\) to transform the integral\(:\)
\(\int \frac{1}{3t^{4}} dt\)
- step4: Rewrite the expression:
\(\int \frac{1}{3}\times \frac{1}{t^{4}} dt\)
- step5: Use properties of integrals:
\(\frac{1}{3}\times \int \frac{1}{t^{4}} dt\)
- step6: Evaluate the integral:
\(\frac{1}{3}\times \frac{t^{-4+1}}{-4+1}\)
- step7: Simplify:
\(\frac{1}{3}\times \frac{t^{-3}}{-3}\)
- step8: Multiply the terms:
\(-\frac{1}{3}\times \frac{t^{-3}}{3}\)
- step9: Multiply the terms:
\(-\frac{t^{-3}}{3\times 3}\)
- step10: Multiply the terms:
\(-\frac{t^{-3}}{9}\)
- step11: Simplify:
\(-\frac{1}{9t^{3}}\)
- step12: Substitute back:
\(-\frac{1}{9\left(3x+5\right)^{3}}\)
- step13: Add the constant of integral C:
\(-\frac{1}{9\left(3x+5\right)^{3}} + C, C \in \mathbb{R}\)
Calculate the integral \( \frac{1}{(x+1)^{3}} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{1}{\left(x+1\right)^{3}} dx\)
- step1: Use the substitution \(dx=1 dt\) to transform the integral\(:\)
\(\int \frac{1}{\left(x+1\right)^{3}}\times 1 dt\)
- step2: Simplify:
\(\int \frac{1}{\left(x+1\right)^{3}} dt\)
- step3: Use the substitution \(t=x+1\) to transform the integral\(:\)
\(\int \frac{1}{t^{3}} dt\)
- step4: Evaluate the integral:
\(\frac{t^{-3+1}}{-3+1}\)
- step5: Add the numbers:
\(\frac{t^{-2}}{-3+1}\)
- step6: Add the numbers:
\(\frac{t^{-2}}{-2}\)
- step7: Substitute back:
\(\frac{\left(x+1\right)^{-2}}{-2}\)
- step8: Simplify:
\(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2}\)
- step9: Add the constant of integral C:
\(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2} + C, C \in \mathbb{R}\)
Calculate the integral \( x^{2} e^{x} \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int x^{2}e^{x} dx\)
- step1: Prepare for integration by parts:
\(\begin{align}&u=x^{2}\\&dv=e^{x}dx\end{align}\)
- step2: Calculate the derivative:
\(\begin{align}&du=2xdx\\&dv=e^{x}dx\end{align}\)
- step3: Evaluate the integral:
\(\begin{align}&du=2xdx\\&v=e^{x}\end{align}\)
- step4: Substitute the values into formula:
\(x^{2}e^{x}-\int 2xe^{x} dx\)
- step5: Evaluate the integral:
\(x^{2}e^{x}-2xe^{x}+2e^{x}\)
- step6: Add the constant of integral C:
\(x^{2}e^{x}-2xe^{x}+2e^{x} + C, C \in \mathbb{R}\)
Calculate the integral \( 4^{x} e^{2 x} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int 4^{x}e^{2x} dx\)
- step1: Multiply the terms:
\(\int \left(4e^{2}\right)^{x} dx\)
- step2: Evaluate the integral:
\(\frac{\left(4e^{2}\right)^{x}}{\ln{\left(4e^{2}\right)}}\)
- step3: Simplify:
\(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}}\)
- step4: Add the constant of integral C:
\(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}} + C, C \in \mathbb{R}\)
Calculate the integral \( x e^{-2 x} \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int xe^{-2x} dx\)
- step1: Prepare for integration by parts:
\(\begin{align}&u=x\\&dv=e^{-2x}dx\end{align}\)
- step2: Calculate the derivative:
\(\begin{align}&du=dx\\&dv=e^{-2x}dx\end{align}\)
- step3: Evaluate the integral:
\(\begin{align}&du=dx\\&v=-\frac{1}{2e^{2x}}\end{align}\)
- step4: Substitute the values into formula:
\(x\left(-\frac{1}{2e^{2x}}\right)-\int 1\times \left(-\frac{1}{2e^{2x}}\right) dx\)
- step5: Calculate:
\(-\frac{x}{2e^{2x}}-\int -\frac{1}{2e^{2x}} dx\)
- step6: Use properties of integrals:
\(-\frac{x}{2e^{2x}}+\int \frac{1}{2e^{2x}} dx\)
- step7: Evaluate the integral:
\(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}}\)
- step8: Add the constant of integral C:
\(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}} + C, C \in \mathbb{R}\)
Calculate the integral \( x^{2} \log x \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int x^{2}\log_{10}{\left(x\right)} dx\)
- step1: Prepare for integration by parts:
\(\begin{align}&u=\log_{10}{\left(x\right)}\\&dv=x^{2}dx\end{align}\)
- step2: Calculate the derivative:
\(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&dv=x^{2}dx\end{align}\)
- step3: Evaluate the integral:
\(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&v=\frac{x^{3}}{3}\end{align}\)
- step4: Substitute the values into formula:
\(\log_{10}{\left(x\right)}\times \frac{x^{3}}{3}-\int \frac{1}{\ln{\left(10\right)}\times x}\times \frac{x^{3}}{3} dx\)
- step5: Calculate:
\(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\int \frac{x^{2}}{3\ln{\left(10\right)}} dx\)
- step6: Evaluate the integral:
\(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\frac{x^{3}}{9\ln{\left(10\right)}}\)
- step7: Simplify the expression:
\(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{x^{3}}{9\ln{\left(10\right)}}\)
- step8: Simplify the expression:
\(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3}\)
- step9: Add the constant of integral C:
\(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3} + C, C \in \mathbb{R}\)
Calculate the integral \( x(3 x-5)^{4} \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int x\left(3x-5\right)^{4} dx\)
- step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\)
\(\int x\left(3x-5\right)^{4}\times \frac{1}{3} dt\)
- step2: Simplify:
\(\int \frac{\left(3x-5\right)^{4}}{3}x dt\)
- step3: Use the substitution \(t=3x-5\) to transform the integral\(:\)
\(\int \frac{t^{4}}{3}\left(\frac{1}{3}t+\frac{5}{3}\right) dt\)
- step4: Simplify:
\(\int \frac{\frac{1}{3}t^{5}+\frac{5}{3}t^{4}}{3} dt\)
- step5: Rewrite the expression:
\(\int \frac{1}{3}\left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\)
- step6: Use properties of integrals:
\(\frac{1}{3}\times \int \left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\)
- step7: Use properties of integrals:
\(\frac{1}{3}\left(\int \frac{1}{3}t^{5} dt+\int \frac{5}{3}t^{4} dt\right)\)
- step8: Calculate:
\(\frac{1}{3}\times \int \frac{1}{3}t^{5} dt+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\)
- step9: Evaluate the integral:
\(\frac{t^{6}}{54}+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\)
- step10: Evaluate the integral:
\(\frac{t^{6}}{54}+\frac{t^{5}}{9}\)
- step11: Substitute back:
\(\frac{\left(3x-5\right)^{6}}{54}+\frac{\left(3x-5\right)^{5}}{9}\)
- step12: Evaluate the power:
\(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9}\)
- step13: Add the constant of integral C:
\(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, C \in \mathbb{R}\)
Here are the solutions for the integrals provided:
1. **Integral of \(x^{2}+3x-2\)**:
\[
\int (x^{2}+3x-2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C, \quad C \in \mathbb{R}
\]
2. **Integral of \(\frac{1}{(3x+5)^{4}}\)**:
\[
\int \frac{1}{(3x+5)^{4}} \, dx = -\frac{1}{9(3x+5)^{3}} + C, \quad C \in \mathbb{R}
\]
3. **Integral of \(\frac{1}{(x+1)^{3}}\)**:
\[
\int \frac{1}{(x+1)^{3}} \, dx = -\frac{1}{2(x+1)^{2}} + C, \quad C \in \mathbb{R}
\]
4. **Integral of \(xe^{-2x}\)** (using integration by parts):
\[
\int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C, \quad C \in \mathbb{R}
\]
5. **Integral of \(x(3x-5)^{4}\)**:
\[
\int x(3x-5)^{4} \, dx = \frac{(3x-5)^{6}}{54} + \frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, \quad C \in \mathbb{R}
\]
6. **Integral of \(x^{2}e^{x}\)** (using integration by parts):
\[
\int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C, \quad C \in \mathbb{R}
\]
7. **Integral of \(x^{2} \log x\)** (using integration by parts):
\[
\int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C, \quad C \in \mathbb{R}
\]
8. **Integral of \(4^{x} e^{2x}\)**:
\[
\int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C, \quad C \in \mathbb{R}
\]
These results provide the indefinite integrals for each of the expressions given.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución