Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { (1) } \int\left(x^{2}+3 x-2\right) d x & \text { (4) } \int \frac{d x}{(3 x+5)^{4}} \\ \text { (5) } \int \frac{d x}{(x+1)^{3}} & \text { (5) } \int x e^{-2 x} d x \\ \text { (3) } \int x(3 x-5)^{4} d x & \text { (6) } \int x^{2} e^{x} d x \\ \text { (7) } \int x^{2} \log x d x & \text { (8) } \int 4^{x} e^{2 x} d x\end{array} \)

Ask by Reese Young. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified solutions for the integrals: 1. \( \int (x^{2} + 3x - 2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C \) 2. \( \int \frac{1}{(3x + 5)^{4}} \, dx = -\frac{1}{9(3x + 5)^{3}} + C \) 3. \( \int \frac{1}{(x + 1)^{3}} \, dx = -\frac{1}{2(x + 1)^{2}} + C \) 4. \( \int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C \) 5. \( \int x(3x - 5)^{4} \, dx = \frac{(3x - 5)^{6}}{54} + \frac{243x^{5} - 2025x^{4} + 6750x^{3} - 11250x^{2} + 9375x - 3125}{9} + C \) 6. \( \int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C \) 7. \( \int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C \) 8. \( \int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C \) These are the simplified indefinite integrals for each of the given expressions.

Solución

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(x^{2}+3x-2\right) dx\) - step1: Use properties of integrals: \(\int x^{2} dx+\int 3x dx+\int -2 dx\) - step2: Evaluate the integral: \(\frac{x^{3}}{3}+\int 3x dx+\int -2 dx\) - step3: Evaluate the integral: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\int -2 dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x\) - step5: Add the constant of integral C: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1}{(3 x+5)^{4}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1}{\left(3x+5\right)^{4}} dx\) - step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\) \(\int \frac{1}{\left(3x+5\right)^{4}}\times \frac{1}{3} dt\) - step2: Simplify: \(\int \frac{1}{3\left(3x+5\right)^{4}} dt\) - step3: Use the substitution \(t=3x+5\) to transform the integral\(:\) \(\int \frac{1}{3t^{4}} dt\) - step4: Rewrite the expression: \(\int \frac{1}{3}\times \frac{1}{t^{4}} dt\) - step5: Use properties of integrals: \(\frac{1}{3}\times \int \frac{1}{t^{4}} dt\) - step6: Evaluate the integral: \(\frac{1}{3}\times \frac{t^{-4+1}}{-4+1}\) - step7: Simplify: \(\frac{1}{3}\times \frac{t^{-3}}{-3}\) - step8: Multiply the terms: \(-\frac{1}{3}\times \frac{t^{-3}}{3}\) - step9: Multiply the terms: \(-\frac{t^{-3}}{3\times 3}\) - step10: Multiply the terms: \(-\frac{t^{-3}}{9}\) - step11: Simplify: \(-\frac{1}{9t^{3}}\) - step12: Substitute back: \(-\frac{1}{9\left(3x+5\right)^{3}}\) - step13: Add the constant of integral C: \(-\frac{1}{9\left(3x+5\right)^{3}} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1}{(x+1)^{3}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1}{\left(x+1\right)^{3}} dx\) - step1: Use the substitution \(dx=1 dt\) to transform the integral\(:\) \(\int \frac{1}{\left(x+1\right)^{3}}\times 1 dt\) - step2: Simplify: \(\int \frac{1}{\left(x+1\right)^{3}} dt\) - step3: Use the substitution \(t=x+1\) to transform the integral\(:\) \(\int \frac{1}{t^{3}} dt\) - step4: Evaluate the integral: \(\frac{t^{-3+1}}{-3+1}\) - step5: Add the numbers: \(\frac{t^{-2}}{-3+1}\) - step6: Add the numbers: \(\frac{t^{-2}}{-2}\) - step7: Substitute back: \(\frac{\left(x+1\right)^{-2}}{-2}\) - step8: Simplify: \(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2}\) - step9: Add the constant of integral C: \(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2} + C, C \in \mathbb{R}\) Calculate the integral \( x^{2} e^{x} \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}e^{x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x^{2}\\&dv=e^{x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=2xdx\\&dv=e^{x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=2xdx\\&v=e^{x}\end{align}\) - step4: Substitute the values into formula: \(x^{2}e^{x}-\int 2xe^{x} dx\) - step5: Evaluate the integral: \(x^{2}e^{x}-2xe^{x}+2e^{x}\) - step6: Add the constant of integral C: \(x^{2}e^{x}-2xe^{x}+2e^{x} + C, C \in \mathbb{R}\) Calculate the integral \( 4^{x} e^{2 x} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int 4^{x}e^{2x} dx\) - step1: Multiply the terms: \(\int \left(4e^{2}\right)^{x} dx\) - step2: Evaluate the integral: \(\frac{\left(4e^{2}\right)^{x}}{\ln{\left(4e^{2}\right)}}\) - step3: Simplify: \(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}}\) - step4: Add the constant of integral C: \(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}} + C, C \in \mathbb{R}\) Calculate the integral \( x e^{-2 x} \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int xe^{-2x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=e^{-2x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=dx\\&dv=e^{-2x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=dx\\&v=-\frac{1}{2e^{2x}}\end{align}\) - step4: Substitute the values into formula: \(x\left(-\frac{1}{2e^{2x}}\right)-\int 1\times \left(-\frac{1}{2e^{2x}}\right) dx\) - step5: Calculate: \(-\frac{x}{2e^{2x}}-\int -\frac{1}{2e^{2x}} dx\) - step6: Use properties of integrals: \(-\frac{x}{2e^{2x}}+\int \frac{1}{2e^{2x}} dx\) - step7: Evaluate the integral: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}}\) - step8: Add the constant of integral C: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}} + C, C \in \mathbb{R}\) Calculate the integral \( x^{2} \log x \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}\log_{10}{\left(x\right)} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=\log_{10}{\left(x\right)}\\&dv=x^{2}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&dv=x^{2}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&v=\frac{x^{3}}{3}\end{align}\) - step4: Substitute the values into formula: \(\log_{10}{\left(x\right)}\times \frac{x^{3}}{3}-\int \frac{1}{\ln{\left(10\right)}\times x}\times \frac{x^{3}}{3} dx\) - step5: Calculate: \(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\int \frac{x^{2}}{3\ln{\left(10\right)}} dx\) - step6: Evaluate the integral: \(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\frac{x^{3}}{9\ln{\left(10\right)}}\) - step7: Simplify the expression: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{x^{3}}{9\ln{\left(10\right)}}\) - step8: Simplify the expression: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3}\) - step9: Add the constant of integral C: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3} + C, C \in \mathbb{R}\) Calculate the integral \( x(3 x-5)^{4} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int x\left(3x-5\right)^{4} dx\) - step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\) \(\int x\left(3x-5\right)^{4}\times \frac{1}{3} dt\) - step2: Simplify: \(\int \frac{\left(3x-5\right)^{4}}{3}x dt\) - step3: Use the substitution \(t=3x-5\) to transform the integral\(:\) \(\int \frac{t^{4}}{3}\left(\frac{1}{3}t+\frac{5}{3}\right) dt\) - step4: Simplify: \(\int \frac{\frac{1}{3}t^{5}+\frac{5}{3}t^{4}}{3} dt\) - step5: Rewrite the expression: \(\int \frac{1}{3}\left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\) - step6: Use properties of integrals: \(\frac{1}{3}\times \int \left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\) - step7: Use properties of integrals: \(\frac{1}{3}\left(\int \frac{1}{3}t^{5} dt+\int \frac{5}{3}t^{4} dt\right)\) - step8: Calculate: \(\frac{1}{3}\times \int \frac{1}{3}t^{5} dt+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\) - step9: Evaluate the integral: \(\frac{t^{6}}{54}+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\) - step10: Evaluate the integral: \(\frac{t^{6}}{54}+\frac{t^{5}}{9}\) - step11: Substitute back: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{\left(3x-5\right)^{5}}{9}\) - step12: Evaluate the power: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9}\) - step13: Add the constant of integral C: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, C \in \mathbb{R}\) Here are the solutions for the integrals provided: 1. **Integral of \(x^{2}+3x-2\)**: \[ \int (x^{2}+3x-2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C, \quad C \in \mathbb{R} \] 2. **Integral of \(\frac{1}{(3x+5)^{4}}\)**: \[ \int \frac{1}{(3x+5)^{4}} \, dx = -\frac{1}{9(3x+5)^{3}} + C, \quad C \in \mathbb{R} \] 3. **Integral of \(\frac{1}{(x+1)^{3}}\)**: \[ \int \frac{1}{(x+1)^{3}} \, dx = -\frac{1}{2(x+1)^{2}} + C, \quad C \in \mathbb{R} \] 4. **Integral of \(xe^{-2x}\)** (using integration by parts): \[ \int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C, \quad C \in \mathbb{R} \] 5. **Integral of \(x(3x-5)^{4}\)**: \[ \int x(3x-5)^{4} \, dx = \frac{(3x-5)^{6}}{54} + \frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, \quad C \in \mathbb{R} \] 6. **Integral of \(x^{2}e^{x}\)** (using integration by parts): \[ \int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C, \quad C \in \mathbb{R} \] 7. **Integral of \(x^{2} \log x\)** (using integration by parts): \[ \int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C, \quad C \in \mathbb{R} \] 8. **Integral of \(4^{x} e^{2x}\)**: \[ \int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C, \quad C \in \mathbb{R} \] These results provide the indefinite integrals for each of the expressions given.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Integrating polynomials, such as in the first integral, involves applying the power rule, where you increase the exponent by one and divide by the new exponent. For example, \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\) (with \(C\) being the constant of integration). When dealing with polynomials combined with other functions, make sure to break it down and apply the rule accordingly for each term! When integrating functions like \(f(x) = \frac{1}{(3x+5)^4}\), substitution can be your best friend! Here, you can let \(u = 3x + 5\), which simplifies the integration process significantly. Remember to also compute \(du\) carefully, as it will help you rewrite the integral in a manageable form, allowing you to use the power rule effectively on the new variable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad