Pregunta
upstudy study bank question image url

A manufacturer produces cans of soup. To pass inspection and go on to distribution, a can must have 6 ounces of soup, plus or minus 1.5 ounces. If the can doesn't meet this requirement, it fails and is sent back. (a) Let \( x \) represent the amount (in ounces) of soup in a can. Write an absolute value inequality that can be used to find the unacceptable amounts of soup in a can. These are the amounts where the soup can will fail the inspection and get sent back. (b) Solve the absolute value inequality from part (a). ( \( \square \square \square+\square \)

Ask by Gordon Reed. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** The absolute value inequality is: \[ |\, x - 6 \,| \, > \, 1.5 \] **(b)** Solving the inequality gives: \[ x < 4.5 \quad \text{or} \quad x > 7.5 \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To tackle this problem, let's dive right in! (a) Based on the requirement that a can must contain 6 ounces of soup, plus or minus 1.5 ounces, we can set up our absolute value inequality. This translates to: \[ |x - 6| > 1.5 \] This inequality states that the amount of soup in a can \( x \) is more than 1.5 ounces away from the 6-ounce mark, indicating unacceptable amounts. (b) To solve the absolute value inequality \( |x - 6| > 1.5 \), we rewrite it in two parts: 1. \( x - 6 > 1.5 \) leads to \( x > 7.5 \) 2. \( x - 6 < -1.5 \) leads to \( x < 4.5 \) Thus, the unacceptable amounts of soup in a can are \( x < 4.5 \) ounces or \( x > 7.5 \) ounces. In interval notation, the unacceptable ranges are \( (-∞, 4.5) \cup (7.5, ∞) \). Now, for some fun facts! Did you know that the concept of absolute value originated from the need to measure distances, regardless of direction? It allows us to express how far a number is from zero, opening up a world of mathematical applications! In the real world, manufacturers use absolute value inequalities in quality control to ensure their products meet standards. This guarantees that consumers receive items that are safe and consistent, like your perfect can of soup! Quality assurance is essential in manufacturing to avoid costly recalls and maintain customer trust.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad