(a) \( \sqrt{288}-\sqrt{18} \) (b) \( \left(9 a^{3} b^{3}\right)\left(3 a b^{2}\right)^{2} \) (c) \( \left(\frac{16 x^{9} y^{3}}{x y^{11}}\right)^{-1 / 2} \) (bimplify each expression. Write your final answer without negative exponents. (a)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify \( \sqrt{288}-\sqrt{18} \), we start by breaking each square root down: 1. For \( \sqrt{288} \), we can express it as \( \sqrt{144 \cdot 2} = 12\sqrt{2} \). 2. For \( \sqrt{18} \), we have \( \sqrt{9 \cdot 2} = 3\sqrt{2} \). Now we can subtract these: \[ 12\sqrt{2} - 3\sqrt{2} = (12 - 3)\sqrt{2} = 9\sqrt{2}. \] So, the final answer for (a) is \( 9\sqrt{2} \). (b) For \( \left(9 a^{3} b^{3}\right)\left(3 a b^{2}\right)^{2} \): 1. Start by simplifying the second part: \[ (3ab^{2})^{2} = 3^{2} (a^{1})^{2} (b^{2})^{2} = 9 a^{2} b^{4}. \] 2. Now we can multiply the terms: \[ 9 a^{3} b^{3} \cdot 9 a^{2} b^{4} = 81 a^{3 + 2} b^{3 + 4} = 81 a^{5} b^{7}. \] Thus, the final answer for (b) is \( 81 a^{5} b^{7} \). (c) To simplify \( \left(\frac{16 x^{9} y^{3}}{x y^{11}}\right)^{-1 / 2} \): 1. First, simplify the inside: \[ \frac{16 x^{9} y^{3}}{xy^{11}} = 16 x^{9-1} y^{3-11} = 16 x^{8} y^{-8}. \] 2. Next, take the reciprocal and apply the exponent: \[ (16 x^{8} y^{-8})^{-1/2} = \frac{1}{(16 x^{8} y^{-8})^{1/2}} = \frac{1}{4} x^{-4} y^{4} = \frac{y^{4}}{4 x^{4}}. \] So the final answer for (c) is \( \frac{y^{4}}{4 x^{4}} \).