Pregunta
upstudy study bank question image url

Practice Your skills Solve for \( n \) in each proportion. 1 \( \frac{3}{n}=\frac{2}{4} \) \( 2 \quad \frac{5}{7}=\frac{n}{14} \) \( 3 \quad \frac{n}{5}=\frac{16}{20} \) \( 4 \quad \frac{14}{8}=\frac{n}{20} \) \( 5 \quad \frac{3}{n}=\frac{27}{108} \) (6) \( 18: 12=n: 6 \) \( 7 \quad 30: 78=n: 13 \) \( 8 \quad n: 8=5: 10 \) 9. \( \quad 15: 2=n: 8 \) \( 10 \quad 40: 72=n: 9 \)

Ask by Black Erickson. in the United Arab Emirates
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the values of \( n \) for each proportion: 1. \( n = 6 \) 2. \( n = 10 \) 3. \( n = 4 \) 4. \( n = 35 \) 5. \( n = 12 \) 6. \( n = 9 \) 7. \( n = 5 \) 8. \( n = 4 \) 9. \( n = 60 \) 10. \( n = 5 \)

Solución

Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{15}{2}=\frac{n}{8}\) - step1: Swap the sides: \(\frac{n}{8}=\frac{15}{2}\) - step2: Multiply both sides of the equation by \(8:\) \(\frac{n}{8}\times 8=\frac{15}{2}\times 8\) - step3: Multiply the terms: \(n=\frac{15\times 8}{2}\) - step4: Evaluate: \(n=60\) Solve the equation \( 3/n=2/4 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{3}{n}=\frac{2}{4}\) - step1: Find the domain: \(\frac{3}{n}=\frac{2}{4},n\neq 0\) - step2: Reduce the fraction: \(\frac{3}{n}=\frac{1}{2}\) - step3: Rewrite the expression: \(n=3\times 2\) - step4: Evaluate: \(n=6\) - step5: Check if the solution is in the defined range: \(n=6,n\neq 0\) - step6: Find the intersection: \(n=6\) Solve the equation \( n/5=16/20 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{n}{5}=\frac{16}{20}\) - step1: Reduce the fraction: \(\frac{n}{5}=\frac{4}{5}\) - step2: Multiply both sides of the equation by \(5:\) \(\frac{n}{5}\times 5=\frac{4}{5}\times 5\) - step3: Multiply the terms: \(n=4\) Solve the equation \( 5/7=n/14 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{5}{7}=\frac{n}{14}\) - step1: Swap the sides: \(\frac{n}{14}=\frac{5}{7}\) - step2: Multiply both sides of the equation by \(14:\) \(\frac{n}{14}\times 14=\frac{5}{7}\times 14\) - step3: Multiply the terms: \(n=\frac{5\times 14}{7}\) - step4: Evaluate: \(n=10\) Solve the equation \( n/8=5/10 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{n}{8}=\frac{5}{10}\) - step1: Reduce the fraction: \(\frac{n}{8}=\frac{1}{2}\) - step2: Multiply both sides of the equation by \(8:\) \(\frac{n}{8}\times 8=\frac{1}{2}\times 8\) - step3: Multiply the terms: \(n=\frac{8}{2}\) - step4: Evaluate: \(n=4\) Solve the equation \( 40/72=n/9 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{40}{72}=\frac{n}{9}\) - step1: Reduce the fraction: \(\frac{5}{9}=\frac{n}{9}\) - step2: Swap the sides: \(\frac{n}{9}=\frac{5}{9}\) - step3: Multiply both sides of the equation by \(9:\) \(\frac{n}{9}\times 9=\frac{5}{9}\times 9\) - step4: Multiply the terms: \(n=5\) Solve the equation \( 14/8=n/20 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{14}{8}=\frac{n}{20}\) - step1: Reduce the fraction: \(\frac{7}{4}=\frac{n}{20}\) - step2: Swap the sides: \(\frac{n}{20}=\frac{7}{4}\) - step3: Multiply both sides of the equation by \(20:\) \(\frac{n}{20}\times 20=\frac{7}{4}\times 20\) - step4: Multiply the terms: \(n=\frac{7\times 20}{4}\) - step5: Evaluate: \(n=35\) Solve the equation \( 30/78=n/13 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{30}{78}=\frac{n}{13}\) - step1: Reduce the fraction: \(\frac{5}{13}=\frac{n}{13}\) - step2: Swap the sides: \(\frac{n}{13}=\frac{5}{13}\) - step3: Multiply both sides of the equation by \(13:\) \(\frac{n}{13}\times 13=\frac{5}{13}\times 13\) - step4: Multiply the terms: \(n=5\) Solve the equation \( 18/12=n/6 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{18}{12}=\frac{n}{6}\) - step1: Reduce the fraction: \(\frac{3}{2}=\frac{n}{6}\) - step2: Swap the sides: \(\frac{n}{6}=\frac{3}{2}\) - step3: Multiply both sides of the equation by \(6:\) \(\frac{n}{6}\times 6=\frac{3}{2}\times 6\) - step4: Multiply the terms: \(n=\frac{3\times 6}{2}\) - step5: Evaluate: \(n=9\) Solve the equation \( 3/n=27/108 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{3}{n}=\frac{27}{108}\) - step1: Find the domain: \(\frac{3}{n}=\frac{27}{108},n\neq 0\) - step2: Reduce the fraction: \(\frac{3}{n}=\frac{1}{4}\) - step3: Rewrite the expression: \(n=3\times 4\) - step4: Evaluate: \(n=12\) - step5: Check if the solution is in the defined range: \(n=12,n\neq 0\) - step6: Find the intersection: \(n=12\) Here are the solutions for \( n \) in each proportion: 1. \( \frac{3}{n} = \frac{2}{4} \) Solving gives: \( n = 6 \) 2. \( \frac{5}{7} = \frac{n}{14} \) Solving gives: \( n = 10 \) 3. \( \frac{n}{5} = \frac{16}{20} \) Solving gives: \( n = 4 \) 4. \( \frac{14}{8} = \frac{n}{20} \) Solving gives: \( n = 35 \) 5. \( \frac{3}{n} = \frac{27}{108} \) Solving gives: \( n = 12 \) 6. \( 18: 12 = n: 6 \) Solving gives: \( n = 9 \) 7. \( 30: 78 = n: 13 \) Solving gives: \( n = 5 \) 8. \( n: 8 = 5: 10 \) Solving gives: \( n = 4 \) 9. \( 15: 2 = n: 8 \) Solving gives: \( n = 60 \) 10. \( 40: 72 = n: 9 \) Solving gives: \( n = 5 \) If you have any further questions or need additional help, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for \( n \) in each proportion, one can cross-multiply and then simplify. For example, in the first equation \( \frac{3}{n} = \frac{2}{4} \), cross-multiplying gives \( 3 \cdot 4 = 2 \cdot n \). Simplifying this leads to \( 12 = 2n \), so \( n = 6 \). Now let's celebrate these nifty proportions! Did you know that proportions have been used since ancient times? They were essential in art, architecture, and even in the world of ratios and recipes! The golden ratio, for instance, is a famous mathematical ratio that not only brings harmony to structures but has also enchanted artists throughout history! If you're grappling with proportions, one common mistake is forgetting to simplify your fractions before cross-multiplying. For instance, \( \frac{2}{4} \) simply reduces to \( \frac{1}{2} \). Simplifying fractions at the right moment saves a lot of calculation fuss and helps avoid errors. So keep an eye out for those reductions!

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad