Pregunta
If \( \$ 500 \) are deposited into an account with a \( 4.5 \% \) interest rate, compounded annually, what is the balance after 6 years? \[ F=\$[?] \] \( F=P\left(1+\frac{r}{n}\right)^{n t} \) Round to the nearest cent.
Ask by Mcdonald Joseph. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The balance after 6 years is $651.13.
Solución
To find the balance after 6 years, we can use the formula for compound interest:
\[ F = P\left(1 + \frac{r}{n}\right)^{nt} \]
Given:
- Principal amount (\( P \)) = $500
- Interest rate (\( r \)) = 4.5% = 0.045
- Compounding frequency (\( n \)) = 1 (compounded annually)
- Time (\( t \)) = 6 years
Substitute the given values into the formula:
\[ F = 500\left(1 + \frac{0.045}{1}\right)^{1 \times 6} \]
Now, we can calculate the balance after 6 years.
Calculate the value by following steps:
- step0: Calculate:
\(500\left(1+0.045\right)^{6}\)
- step1: Add the numbers:
\(500\times 1.045^{6}\)
- step2: Convert the expressions:
\(500\left(\frac{209}{200}\right)^{6}\)
- step3: Simplify:
\(500\times \frac{209^{6}}{200^{6}}\)
- step4: Rewrite the expression:
\(100\times 5\times \frac{209^{6}}{200^{6}}\)
- step5: Rewrite the expression:
\(100\times 5\times \frac{209^{6}}{100^{6}\times 2^{6}}\)
- step6: Reduce the numbers:
\(5\times \frac{209^{6}}{100^{5}\times 2^{6}}\)
- step7: Rewrite the expression:
\(5\times \frac{209^{6}}{25^{5}\times 4^{5}\times 2^{6}}\)
- step8: Rewrite the expression:
\(5\times \frac{209^{6}}{5^{10}\times 4^{5}\times 2^{6}}\)
- step9: Reduce the numbers:
\(1\times \frac{209^{6}}{5^{9}\times 4^{5}\times 2^{6}}\)
- step10: Multiply the fractions:
\(\frac{209^{6}}{2^{16}\times 5^{9}}\)
- step11: Evaluate the power:
\(\frac{209^{6}}{65536\times 5^{9}}\)
The balance after 6 years is approximately $651.13.
Therefore, the balance after 6 years is $651.13.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To calculate the future balance using the formula \( F = P\left(1 + \frac{r}{n}\right)^{nt} \), where \( P = 500 \), \( r = 0.045 \) (4.5%), \( n = 1 \) (compounded annually), and \( t = 6 \): \[ F = 500\left(1 + \frac{0.045}{1}\right)^{1 \cdot 6} = 500\left(1 + 0.045\right)^{6} = 500\left(1.045\right)^{6} \] Calculating \( (1.045)^{6} \) gives approximately \( 1.28368 \). Now, multiplying this by \( 500 \): \[ F \approx 500 \cdot 1.28368 \approx 641.84 \] Thus, the balance after 6 years will be approximately \( F = \$641.84 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium