Pregunta
upstudy study bank question image url

Find an equation of the line that satisfies the given conditions. Through \( (1,-1) \); parallel to the line \( x+2 y=6 \)

Ask by Hills Donnelly. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -\frac{1}{2}x - \frac{1}{2} \).

Solución

To find the equation of the line that passes through the point \( (1, -1) \) and is parallel to the line given by the equation \( x + 2y = 6 \), we can follow these steps: 1. **Determine the slope of the given line**: We need to rewrite the equation \( x + 2y = 6 \) in slope-intercept form \( y = mx + b \), where \( m \) is the slope. Rearranging the equation: \[ 2y = -x + 6 \] \[ y = -\frac{1}{2}x + 3 \] From this, we can see that the slope \( m \) of the given line is \( -\frac{1}{2} \). 2. **Use the slope for the new line**: Since the new line is parallel to the given line, it will have the same slope. Therefore, the slope of the new line is also \( -\frac{1}{2} \). 3. **Use the point-slope form of the equation**: The point-slope form of a line is given by: \[ y - y_1 = m(x - x_1) \] where \( (x_1, y_1) \) is a point on the line and \( m \) is the slope. Here, \( (x_1, y_1) = (1, -1) \) and \( m = -\frac{1}{2} \). Plugging in the values: \[ y - (-1) = -\frac{1}{2}(x - 1) \] Simplifying this: \[ y + 1 = -\frac{1}{2}x + \frac{1}{2} \] \[ y = -\frac{1}{2}x + \frac{1}{2} - 1 \] \[ y = -\frac{1}{2}x - \frac{1}{2} \] 4. **Final equation**: The equation of the line in slope-intercept form is: \[ y = -\frac{1}{2}x - \frac{1}{2} \] Thus, the equation of the line that passes through the point \( (1, -1) \) and is parallel to the line \( x + 2y = 6 \) is: \[ y = -\frac{1}{2}x - \frac{1}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line that passes through the point \( (1,-1) \) and is parallel to the line given by \( x + 2y = 6 \), we first need to determine the slope of the given line. Rearranging it into slope-intercept form \( y = mx + b \): 1. Solve for \( y \): \[ 2y = -x + 6 \] \[ y = -\frac{1}{2}x + 3 \] The slope \( m \) of the original line is \( -\frac{1}{2} \). Since parallel lines have the same slope, the new line will also have a slope of \( -\frac{1}{2} \). 2. Using the point-slope form \( y - y_1 = m(x - x_1) \), where \( (x_1, y_1) = (1, -1) \): \[ y - (-1) = -\frac{1}{2}(x - 1) \] \[ y + 1 = -\frac{1}{2}x + \frac{1}{2} \] 3. Simplifying this gives: \[ y = -\frac{1}{2}x + \frac{1}{2} - 1 \] \[ y = -\frac{1}{2}x - \frac{1}{2} \] Thus, the equation of the line that is parallel to \( x + 2y = 6 \) and passes through the point \( (1,-1) \) is: \[ y = -\frac{1}{2}x - \frac{1}{2} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad