Responder
**Question 1:**
1. **Find the largest value of \( k \) for which:**
\[
\sum_{n=1}^{k} 2 \cdot 3^{n} < 30{,}000
\]
**Answer:** \( k = 8 \)
2. **For which values of \( x \) will the series \( \sum_{k=1}^{\infty} (4x - 1)^{k} \) exist?**
**Answer:** \( 0 < x < \dfrac{1}{2} \)
**Question 2:**
1. **Consider the arithmetic sequence: \( -8, -2, 4, 10, \ldots \).**
a. **If the \( n^{\text{th}} \) term is 148, find \( n \).**
**Answer:** \( n = 27 \)
b. **Find the smallest \( n \) where the sum of the first \( n \) terms is greater than 10,140.**
**Answer:** \( n = 61 \)
Solución
Let's tackle each question step-by-step to ensure clarity and thorough understanding.
---
## **Question 1**
### **1.1. Find the largest value of \( k \) for which:**
\[
\sum_{n=1}^{k} 2 \cdot 3^{n} < 30{,}000
\]
**Solution:**
First, evaluate the sum of the geometric series:
\[
S(k) = \sum_{n=1}^{k} 2 \cdot 3^{n}
\]
Factor out the constant:
\[
S(k) = 2 \sum_{n=1}^{k} 3^{n}
\]
Recall the formula for the sum of a geometric series:
\[
\sum_{n=1}^{k} r^{n} = \frac{r^{k+1} - r}{r - 1}
\]
Applying this formula:
\[
S(k) = 2 \left( \frac{3^{k+1} - 3}{3 - 1} \right) = 2 \left( \frac{3^{k+1} - 3}{2} \right) = 3^{k+1} - 3
\]
Set the sum less than 30,000:
\[
3^{k+1} - 3 < 30{,}000 \\
3^{k+1} < 30{,}003
\]
Take the logarithm base 3 of both sides to solve for \( k+1 \):
\[
k + 1 < \log_{3}(30{,}003)
\]
Estimate \( \log_{3}(30{,}003) \):
\[
3^{9} = 19{,}683 < 30{,}003 < 59{,}049 = 3^{10}
\]
\[
\Rightarrow 9 < \log_{3}(30{,}003) < 10
\]
\[
\Rightarrow k + 1 < 10 \\
\Rightarrow k < 9
\]
Since \( k \) must be an integer, the largest possible value is:
\[
k = 8
\]
**Answer:** The largest value of \( k \) is **8**.
---
### **1.2. For which values of \( x \) will the series \( \sum_{k=1}^{\infty} (4x - 1)^{k} \) exist?**
**Solution:**
The given series is a geometric series with:
\[
\text{First term} = a = (4x - 1)^1 = 4x - 1
\]
\[
\text{Common ratio} = r = 4x - 1
\]
A geometric series converges (i.e., exists) if and only if the absolute value of the common ratio is less than 1:
\[
|r| < 1 \\
|4x - 1| < 1
\]
Solve the inequality:
\[
-1 < 4x - 1 < 1
\]
Add 1 to all parts:
\[
0 < 4x < 2
\]
Divide by 4:
\[
0 < x < \frac{1}{2}
\]
**Answer:** The series exists for all real numbers \( x \) where \( 0 < x < \dfrac{1}{2} \).
---
## **Question 2**
### **2.1. Consider the arithmetic sequence: \( -8, -2, 4, 10, \ldots \).**
First, identify the common difference (\( d \)):
\[
d = -2 - (-8) = 6
\]
### **2.1.1. If the \( n^{\text{th}} \) term of the sequence is 148, determine the value of \( n \).**
**Solution:**
The formula for the \( n^{\text{th}} \) term of an arithmetic sequence is:
\[
a_n = a_1 + (n - 1)d
\]
Given:
\[
a_n = 148, \quad a_1 = -8, \quad d = 6
\]
Plug in the values:
\[
148 = -8 + (n - 1) \cdot 6 \\
148 + 8 = 6(n - 1) \\
156 = 6(n - 1) \\
n - 1 = \frac{156}{6} = 26 \\
n = 26 + 1 = 27
\]
**Answer:** The value of \( n \) is **27**.
---
### **2.1.2. Calculate the smallest value of \( n \) for which the sum of the first \( n \) terms of the sequence will be greater than 10,140.**
**Solution:**
The sum of the first \( n \) terms (\( S_n \)) of an arithmetic sequence is given by:
\[
S_n = \frac{n}{2} \left( 2a_1 + (n - 1)d \right)
\]
Given:
\[
a_1 = -8, \quad d = 6
\]
Plug in the values:
\[
S_n = \frac{n}{2} \left( 2(-8) + (n - 1) \cdot 6 \right) \\
S_n = \frac{n}{2} \left( -16 + 6n - 6 \right) \\
S_n = \frac{n}{2} (6n - 22) \\
S_n = n(3n - 11)
\]
Set the sum greater than 10,140:
\[
n(3n - 11) > 10{,}140 \\
3n^2 - 11n - 10{,}140 > 0
\]
Solve the quadratic inequality \( 3n^2 - 11n - 10{,}140 > 0 \):
1. Find the roots using the quadratic formula:
\[
n = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 3 \cdot (-10{,}140)}}{2 \cdot 3} \\
n = \frac{11 \pm \sqrt{121 + 121{,}680}}{6} \\
n = \frac{11 \pm \sqrt{121{,}801}}{6} \\
n = \frac{11 \pm 349}{6}
\]
2. Calculate the roots:
\[
n_1 = \frac{11 + 349}{6} = \frac{360}{6} = 60 \\
n_2 = \frac{11 - 349}{6} = \frac{-338}{6} \approx -56.33 \quad (\text{Not relevant since } n > 0)
\]
3. Determine the intervals where the inequality holds:
Since the quadratic coefficient is positive, the inequality \( 3n^2 - 11n - 10{,}140 > 0 \) holds for:
\[
n < -56.33 \quad \text{or} \quad n > 60
\]
Only \( n > 60 \) is relevant.
4. Since \( n \) must be an integer, the smallest integer greater than 60 is 61.
**Answer:** The smallest value of \( n \) is **61**.
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución