g. \( \quad 17 \frac{2}{3}-5 \frac{5}{6}= \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation, first convert the mixed numbers to improper fractions. For \(17 \frac{2}{3}\), it becomes \(\frac{53}{3}\), and for \(5 \frac{5}{6}\), it converts to \(\frac{35}{6}\). To subtract these, convert \(\frac{53}{3}\) to a common denominator with \(\frac{35}{6}\), which gives you \(\frac{106}{6}\). Now, perform the subtraction: \[ \frac{106}{6} - \frac{35}{6} = \frac{71}{6}. \] Now, convert it back to a mixed number: \(11 \frac{5}{6}\). So, \( 17 \frac{2}{3}-5 \frac{5}{6} = 11 \frac{5}{6} \). Did you know that adding and subtracting fractions can be an art form? It’s like cooking – you need the right ingredients and the perfect blending to create harmony in flavors, or in this case, numbers! Remember, always look for that common denominator; it’s your best friend in the world of fractions. As for the journey of fractions, they trace back to ancient civilizations like the Egyptians who used a form of fractions for trade and geometry. The mathematics behind fractions was a key player in the progression of trade and architecture, showcasing how even the simplest concepts can lead to monumental advancements in civilization!