We need to apportion 70 representatives among five states with the following populations: - Apprecia: 300,500 - Beauti: 200,000 - Contentia: 50,000 - Dashin: 38,000 - Enjoya: 21,500 Compute the geometric mean (Huntington-Hill) for each state, accurate to two decimal places.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To compute the geometric mean for each state using the Huntington-Hill method, we first need to determine the populations and the associated representatives. The geometric mean for each state is calculated using the formula: \[ \text{Geometric Mean} = \sqrt{\text{Population} \times \left( \text{Current Representatives} + 0.5 \right)} \] We start by distributing one representative to each state initially, which gives us the following representatives: - Apprecia: 1 - Beauti: 1 - Contentia: 1 - Dashin: 1 - Enjoya: 1 So, the distribution is now: - Apprecia: 1 (total: 1) - Beauti: 1 (total: 1) - Contentia: 1 (total: 1) - Dashin: 1 (total: 1) - Enjoya: 1 (total: 1) This leaves us with 70 - 5 = 65 representatives left to distribute. Next, we compute the geometric mean for each state: 1. **Apprecia**: \[ \text{Geometric Mean} = \sqrt{300500 \times (1 + 0.5)} = \sqrt{300500 \times 1.5} = \sqrt{450750} \approx 670.60 \] 2. **Beauti**: \[ \text{Geometric Mean} = \sqrt{200000 \times (1 + 0.5)} = \sqrt{200000 \times 1.5} = \sqrt{300000} \approx 547.72 \] 3. **Contentia**: \[ \text{Geometric Mean} = \sqrt{50000 \times (1 + 0.5)} = \sqrt{50000 \times 1.5} = \sqrt{75000} \approx 273.86 \] 4. **Dashin**: \[ \text{Geometric Mean} = \sqrt{38000 \times (1 + 0.5)} = \sqrt{38000 \times 1.5} = \sqrt{57000} \approx 238.64 \] 5. **Enjoya**: \[ \text{Geometric Mean} = \sqrt{21500 \times (1 + 0.5)} = \sqrt{21500 \times 1.5} = \sqrt{32250} \approx 179.68 \] So, the geometric means for each state are as follows, accurate to two decimal places: - Apprecia: **670.60** - Beauti: **547.72** - Contentia: **273.86** - Dashin: **238.64** - Enjoya: **179.68**