Solve using substitution. \( \begin{array}{l}x+y=-15 \\ 10 x-7 y=20\end{array} \) Submit
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the system of equations using substitution, start with the first equation \( x + y = -15 \). You can express \( y \) in terms of \( x \): \[ y = -15 - x. \] Now, substitute this expression for \( y \) into the second equation \( 10x - 7y = 20 \): \[ 10x - 7(-15 - x) = 20. \] This simplifies to: \[ 10x + 105 + 7x = 20. \] Combine like terms: \[ 17x + 105 = 20. \] Now, isolate \( x \) by subtracting 105 from both sides: \[ 17x = 20 - 105 \] \[ 17x = -85. \] Now, divide by 17: \[ x = -5. \] Next, substitute \( x = -5 \) back into the equation for \( y \): \[ y = -15 - (-5) = -15 + 5 = -10. \] Thus, the solution to the system of equations is: \[ (x, y) = (-5, -10). \]