Pregunta
upstudy study bank question image url

Kyoko has \( \$ 15,000 \) that she wants to invest. Her bank has several accounts to choose from. Her goal is to have \( \$ 20,000 \) by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) \%

Ask by Chadwick Ruiz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Kyoko needs an annual interest rate of approximately 4.12% to reach her goal of \$20,000 in 7 years with daily compounding.

Solución

To determine the minimum annual interest rate Kyoko needs to achieve her goal of \( \$20,000 \) in 7 years from an initial investment of \( \$15,000 \) with daily compounding, we can use the **compound interest formula**: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A = \$20,000 \) (future value) - \( P = \$15,000 \) (principal) - \( r \) is the annual interest rate (as a decimal) - \( n = 365 \) (number of compounding periods per year) - \( t = 7 \) years **Step 1: Plugging in the known values** \[ 20,000 = 15,000 \left(1 + \frac{r}{365}\right)^{365 \times 7} \] **Step 2: Simplifying the equation** \[ \frac{20,000}{15,000} = \left(1 + \frac{r}{365}\right)^{2555} \] \[ 1.3333 = \left(1 + \frac{r}{365}\right)^{2555} \] **Step 3: Taking the natural logarithm on both sides** \[ \ln(1.3333) = 2555 \times \ln\left(1 + \frac{r}{365}\right) \] \[ 0.2877 = 2555 \times \ln\left(1 + \frac{r}{365}\right) \] \[ \ln\left(1 + \frac{r}{365}\right) = \frac{0.2877}{2555} \approx 0.0001126 \] **Step 4: Solving for \( r \)** \[ 1 + \frac{r}{365} \approx e^{0.0001126} \approx 1.0001127 \] \[ \frac{r}{365} \approx 0.0001127 \] \[ r \approx 0.0001127 \times 365 \approx 0.0412 \text{ or } 4.12\% \] **Conclusion** Kyoko needs a **minimum annual interest rate of approximately 4.12%** to reach her goal of \( \$20,000 \) in 7 years with daily compounding. **Answer:** 4.12\%

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the minimum annual interest rate Kyoko needs, we can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest (in this case, \( A = 20,000 \)), - \( P \) is the principal amount (the initial money, \( P = 15,000 \)), - \( r \) is the annual interest rate (in decimal), - \( n \) is the number of times that interest is compounded per unit year (for daily compounding, \( n = 365 \)), - \( t \) is the time the money is invested for (in years, \( t = 7 \)). Rearranging the formula to solve for \( r \): 1. Start with the formula: \[ 20,000 = 15,000 \left(1 + \frac{r}{365}\right)^{365 \times 7} \] 2. Divide both sides by 15,000: \[ \frac{20,000}{15,000} = \left(1 + \frac{r}{365}\right)^{2555} \] 3. This simplifies to: \[ \frac{4}{3} = \left(1 + \frac{r}{365}\right)^{2555} \] 4. Take the natural logarithm of both sides: \[ \ln\left(\frac{4}{3}\right) = 2555 \cdot \ln\left(1 + \frac{r}{365}\right) \] 5. Solve for \( \frac{r}{365} \): \[ \frac{r}{365} = e^{\frac{\ln\left(\frac{4}{3}\right)}{2555}} - 1 \] 6. Multiply through by 365 to solve for \( r \): 7. Converting it back to a percentage by multiplying by 100. Upon calculating \( r \), it results in approximately \( 0.037309 \) or \( 3.73\% \). To the nearest hundredth of a percent, Kyoko needs a minimum annual interest rate of approximately **3.73%**.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad