Simplify the following without using a calculator. \( \begin{array}{lll}\text { (a) } \sqrt{7} \sqrt{3} & \text { (b) } \sqrt{7} \sqrt{7}+(\sqrt{11})^{2} & \text { (c) }(2 \sqrt{3})^{2} \\ \text { (d) } 3 \sqrt{6}-\sqrt{6}+7 \sqrt{6} & \text { (c) } \sqrt[4]{3}+7 \sqrt[4]{3}-5 \sqrt[4]{3} & \text { (f) } \sqrt{3}+\sqrt{2} \\ \text { (d) } 2 \sqrt{18}-\sqrt{32} & \text { (h) } \frac{\sqrt{32}}{\sqrt{2}} & \text { (i) } \frac{\sqrt{51}}{2 \sqrt{3}}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Sure! Here are the simplified forms of each expression: (a) \( \sqrt{7} \sqrt{3} = \sqrt{21} \) (b) \( \sqrt{7} \sqrt{7} + (\sqrt{11})^{2} = 7 + 11 = 18 \) (c) \( (2 \sqrt{3})^{2} = 4 \cdot 3 = 12 \) (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \) (e) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \) (f) \( \sqrt{3} + \sqrt{2} \) remains as is, since it cannot be simplified further. (g) \( 2 \sqrt{18} - \sqrt{32} = 2 \cdot 3 \sqrt{2} - 4 \sqrt{2} = 6 \sqrt{2} - 4 \sqrt{2} = 2 \sqrt{2} \) (h) \( \frac{\sqrt{32}}{\sqrt{2}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \) (i) \( \frac{\sqrt{51}}{2 \sqrt{3}} = \frac{1}{2} \cdot \frac{\sqrt{51}}{\sqrt{3}} = \frac{\sqrt{51}}{2\sqrt{3}} \) remains as is, as it cannot be further simplified without a calculator.