Question Find the center and radius of the circle represented by the equation below. \[ (x-11)^{2}+(y+4)^{2}=144 \] Answer Attempt 2 out of 2 Center: Radius:
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The center of the circle is found by examining the equation's format, which is \((x-h)^{2} + (y-k)^{2} = r^{2}\). Here, \(h\) and \(k\) represent the x and y coordinates of the center, respectively. For your equation, \(h\) is 11 and \(k\) is -4, so the center is at the point (11, -4). To find the radius, take the square root of the right side of the equation. Since \(r^{2} = 144\), the radius \(r\) is \(\sqrt{144} = 12\). Therefore, the circle has a radius of 12 units.