Find the exact value of the expression. \[ \sin \left[\sin ^{-1} \frac{3}{5}+\cos ^{-1}\left(-\frac{7}{25}\right)\right] \] \( \boldsymbol{\operatorname { s i n }}\left[\sin ^{-1} \frac{3}{5}+\cos ^{-1}\left(-\frac{7}{25}\right)\right]=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the exact value of the expression \[ \sin \left[\sin ^{-1} \frac{3}{5}+\cos ^{-1}\left(-\frac{7}{25}\right)\right], \] we will use the following identities: 1. Let \(\theta = \sin^{-1} \left(\frac{3}{5}\right)\). 2. Therefore, \(\sin(\theta) = \frac{3}{5}\). We can find \(\cos(\theta)\) using the Pythagorean identity: \[ \cos^2(\theta) + \sin^2(\theta) = 1 \implies \cos^2(\theta) + \left(\frac{3}{5}\right)^2 = 1. \] Calculating: \[ \left(\frac{3}{5}\right)^2 = \frac{9}{25} \implies \cos^2(\theta) = 1 - \frac{9}{25} = \frac{16}{25} \implies \cos(\theta) = \frac{4}{5}. \] Since \(\sin^{-1} \left(\frac{3}{5}\right)\) is in the first quadrant, \(\cos(\theta) = \frac{4}{5}\). Next, let \( \phi = \cos^{-1} \left(-\frac{7}{25}\right) \). Thus, \(\cos(\phi) = -\frac{7}{25}\). To find \(\sin(\phi)\), we apply the Pythagorean identity again: \[ \sin^2(\phi) + \cos^2(\phi) = 1 \implies \sin^2(\phi) + \left(-\frac{7}{25}\right)^2 = 1. \] Calculating: \[ \left(-\frac{7}{25}\right)^2 = \frac{49}{625} \implies \sin^2(\phi) = 1 - \frac{49}{625} = \frac{576}{625}. \] Thus, \[ \sin(\phi) = \sqrt{\frac{576}{625}} = \frac{24}{25}. \] Since \(\cos(\phi)\) is negative, \(\phi\) is in the second quadrant, thus \(\sin(\phi) = \frac{24}{25}\). Now, we can use the angle addition formula for sine: \[ \sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi). \] Substituting in the values found: \[ \sin(\theta + \phi) = \left(\frac{3}{5}\right) \left(-\frac{7}{25}\right) + \left(\frac{4}{5}\right) \left(\frac{24}{25}\right). \] Calculating each term: 1. The first term: \[ \frac{3}{5} \cdot -\frac{7}{25} = -\frac{21}{125}. \] 2. The second term: \[ \frac{4}{5} \cdot \frac{24}{25} = \frac{96}{125}. \] Adding these two results together: \[ \sin(\theta + \phi) = -\frac{21}{125} + \frac{96}{125} = \frac{75}{125} = \frac{3}{5}. \] Thus, the value of the expression is: \[ \boxed{\frac{3}{5}}. \]