Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 18 and standard deviation 15 . What is the probability that \( X \) is between 48 and 63 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Gonzalez Evans. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 48 and 63 is **0.047**.

Solución

To determine the probability that \( X \) is between 48 and 63 using the \( 68\%-95\%-99.7\% \) rule, follow these steps: 1. **Identify the Mean and Standard Deviation:** - Mean (\( \mu \)) = 18 - Standard deviation (\( \sigma \)) = 15 2. **Convert the Values to Z-Scores:** - \( Z_1 = \frac{48 - 18}{15} = 2 \) - \( Z_2 = \frac{63 - 18}{15} = 3 \) 3. **Apply the \( 68\%-95\%-99.7\% \) Rule:** - **Within 1 Standard Deviation (\( \mu \pm 1\sigma \)):** 68% - **Within 2 Standard Deviations (\( \mu \pm 2\sigma \)):** 95% - **Within 3 Standard Deviations (\( \mu \pm 3\sigma \)):** 99.7% The probability between \( 2\sigma \) and \( 3\sigma \) is: \[ 99.7\% - 95\% = 4.7\% \] 4. **Express the Probability as a Decimal:** \[ 4.7\% = 0.047 \] **Final Answer:** The probability that \( X \) is between 48 and 63 is **0.047**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that \( X \) lies between 48 and 63 in a normally distributed variable with mean \( \mu = 18 \) and standard deviation \( \sigma = 15 \), we first calculate the z-scores for both values. 1. For \( X = 48 \): \[ z = \frac{X - \mu}{\sigma} = \frac{48 - 18}{15} = \frac{30}{15} = 2 \] 2. For \( X = 63 \): \[ z = \frac{X - \mu}{\sigma} = \frac{63 - 18}{15} = \frac{45}{15} = 3 \] Now we want to find the probability that \( X \) is between z-scores of 2 and 3. According to the \( 0.68-0.95-0.997 \) rule, approximately: - About 68% of the data falls within 1 standard deviation (between -1 and 1 z-scores). - About 95% falls within 2 standard deviations (between -2 and 2 z-scores). - About 99.7% falls within 3 standard deviations (between -3 and 3 z-scores). To find the probability between z = 2 and z = 3, we calculate the area under the normal curve for these z-scores: - Probability for \( z = 2 \) (between -2 and 2): 95% (or 0.95). This means \( 0.95 / 2 = 0.475 \) is to the right of the mean. - Probability for \( z = 3 \) (between -3 and 3): 99.7% (or 0.997). This means \( 0.997 / 2 = 0.4985 \) is to that side of the mean. Now, to find the area between z = 2 and z = 3: \[ P(2 < z < 3) = P(z < 3) - P(z < 2) = 0.9987 - 0.975 \] Calculating that gives us: \[ P(48 < X < 63) \approx 0.9987 - 0.975 \approx 0.0237 \] So the probability that \( X \) is between 48 and 63 is approximately **0.024** when rounded to the nearest thousandth.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad