9. \( 3(2x-5)+2(4x+7)=5(3x+1) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation \( 3(2x-5)+2(4x+7)=5(3x+1) \), let's start by distributing the terms. First, distribute on the left side: \( 3(2x) - 3(5) + 2(4x) + 2(7) \) This simplifies to: \( 6x - 15 + 8x + 14 \) Now, combine like terms: \( (6x + 8x) + (-15 + 14) = 14x - 1 \) Now, distribute on the right side: \( 5(3x) + 5(1) \) This simplifies to: \( 15x + 5 \) We now have: \( 14x - 1 = 15x + 5 \) Next, move the \( 15x \) to the left side: \( 14x - 15x - 1 = 5 \) This simplifies to: \( -x - 1 = 5 \) Now, add 1 to both sides: \( -x = 5 + 1 \) \( -x = 6 \) Finally, multiply both sides by -1 to solve for \( x \): \( x = -6 \) So, the solution to the equation is \( x = -6 \).