Pregunta
upstudy study bank question image url

\( 26 \% \) of college students say they use credit cards because of the rewards program. You randomly select 10 college students and ask each to name the reason he or she uses credit cards. Find the probability that the number of college students who say they use credit cards because of the rewards program is (a) exactly two, (b) more than two, and (c) between two and five inclusive. If convenient, use technology to find the probabilities. (a) \( \mathrm{P}(2)=0.274 \) (Round to the nearest thousandth as needed.) (b) \( \mathrm{P}(\mathrm{x}>2)=0.503 \) (Round to the nearest thousandth as needed.) (c) \( \mathrm{P}(2 \leq x \leq 5)=\square \) (Round to the nearest thousandth as needed.)

Ask by Ward Medina. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that between two and five college students use credit cards because of rewards is 0.753.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To solve this problem, we can model the situation using the binomial probability formula since we have a fixed number of trials (10 college students), two possible outcomes (using credit cards for rewards or not), and a constant probability of success (26% or 0.26). First, let’s note the formula for finding the probability of exactly \( k \) successes in \( n \) trials: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Where: - \( \binom{n}{k} \) is the binomial coefficient, - \( n \) is the number of trials, - \( k \) is the number of successes, - \( p \) is the probability of success, and - \( (1-p) \) is the probability of failure. Given: - \( n = 10 \) - \( p = 0.26 \) (a) For \( P(X = 2) \): \[ P(X = 2) = \binom{10}{2} (0.26)^2 (0.74)^{8} \] Calculating this we get: \[ = \frac{10!}{2!(10-2)!} \cdot (0.26)^2 \cdot (0.74)^{8} \approx 0.274 \] (b) For \( P(X > 2) \): This can be computed as \( 1 - P(X \leq 2) \) which is \( 1 - [P(X = 0) + P(X = 1) + P(X = 2)] \). Calculating each separately: - \( P(X = 0) \approx 0.062 \) - \( P(X = 1) \approx 0.187 \) - \( P(X = 2) \approx 0.274 \) Thus, \[ P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) \approx 0.062 + 0.187 + 0.274 \approx 0.523 \] So, \[ P(X > 2) \approx 1 - 0.523 \approx 0.477 \] (c) For \( P(2 \leq X \leq 5) \): This is calculated as \( P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) \). Calculating \( P(X = 3), P(X = 4), \) and \( P(X = 5) \): Using the formula: - \( P(X = 3) \approx 0.227 \) - \( P(X = 4) \approx 0.137 \) - \( P(X = 5) \approx 0.062 \) Adding them together: \[ P(2 \leq X \leq 5) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) \approx 0.274 + 0.227 + 0.137 + 0.062 \approx 0.700 \] So the final results (rounded to the nearest thousandth) are: **(a)** \( P(2) = 0.274 \) **(b)** \( P(X > 2) = 0.477 \) (Corrected from earlier, make sure to feed this into your tech tools for verification!) **(c)** \( P(2 \leq X \leq 5) \approx 0.700 \) (Round to the nearest thousandth as needed.)

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad