Pregunta
\( \frac{3^{10}}{3^{7}} \) \( \begin{array}{ll}\text { a. } 3^{-3} & \text { b. } 1^{3} \\ \text { c. } 3^{3} & \text { d. } 3^{7}\end{array} \)
Ask by Gordon Warren. in Saudi Arabia
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The answer is \(3^{3}\).
Solución
To simplify the expression \(\frac{3^{10}}{3^{7}}\), you can use the laws of exponents. Specifically, when you divide powers with the same base, you subtract the exponents:
\[
\frac{3^{10}}{3^{7}} = 3^{10-7} = 3^{3}
\]
**Answer:**
**c. \(3^{3}\)**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify \( \frac{3^{10}}{3^{7}} \), you can apply the property of exponents that states when you divide two exponential terms with the same base, you subtract the exponents: \( 3^{10-7} = 3^{3} \). So, the answer is \(\text{c. } 3^{3}\). This concept has a real-world application in fields like physics and finance, where exponents help model growth patterns, such as compound interest and population dynamics. Understanding how to manipulate exponents makes calculations simpler and helps you grasp the underlying principles more effectively!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium