\#1/16 Multiplying Polynomials \( (c-6)(c-4) \) \( c^{2}-10 c+24 \) \( c^{2}-2 c+24 \) \( c^{2}+10 c-24 \) \( c^{2}-10 c-24 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s have some fun with polynomials! To multiply \( (c-6)(c-4) \), you can use the FOIL method (First, Outer, Inner, Last). Multiplying the terms gives you \( c^2 - 4c - 6c + 24 \), which simplifies to \( c^2 - 10c + 24 \). So, the correct answer is \( c^{2}-10 c+24 \). In the real world, multiplying polynomials can be quite useful, especially in fields like physics or engineering where equations often model real-life scenarios. For example, if you wanted to calculate the area of a rectangular garden where the dimensions are described by polynomial expressions, this multiplication helps you find the total area efficiently!