\( \left. \begin{array} { l l l } { + 24 x ^ { 4 } : ( - 12 x ^ { 3 } ) } & { + 48 x ^ { 5 } y ^ { 2 } z : ( + 2 y ^ { 2 } z ) } & { - 18 x ^ { 3 } y ^ { 2 } z : ( - 9 x ^ { 3 } y ^ { 2 } z ) } \\ { - 36 a ^ { 5 } : ( - 18 a ) } & { - 27 a ^ { 2 } b c ^ { 2 } : ( + 9 a ^ { 2 } b ) } & { + 42 a ^ { 9 } x y ^ { 2 } : ( + 21 a ^ { 9 } y ^ { 2 } ) } \\ { + 32 x ^ { 3 } : ( + 8 x ^ { 3 } ) } & { - 54 a ^ { 5 } x ^ { 2 } y : ( + 27 x ^ { 2 } ) } & { - 39 x ^ { 5 } y ^ { 4 } : ( - 13 x ^ { 6 } y ^ { 4 } ) } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
When you simplify each of these expressions, you'll see the power of factoring in algebra. For instance, when dividing \( + 24 x^{4} \) by \( - 12 x^{3} \), you're really just looking at the coefficients and subtracting the exponents of like bases, leading to a clean answer of \( -2x^{1} \). It’s like a math magic trick that becomes clearer with practice! The real-world application of these kinds of polynomial divisions can be found in fields like engineering and computer science, where simplifying expressions leads to more efficient problem-solving. For example, knowing how to manage variables efficiently can help optimize algorithms or streamline calculations in various designs. So, not only is this math important academically, but it also plays a crucial role in technological advancements!