Pregunta
upstudy study bank question image url

Is \( (3,2) \) a solution to the system \( y-x=1 \) and \( -3 x-2 y=5 \) ? No, because \( (3,2) \) is a solution to only one equation. No, because \( (3,2) \) is a solution to neither equation. Yes, because \( (3,2) \) is a solution to one equation. Yes, because \( (3,2) \) is a solution to both equations.

Ask by Mccoy Morgan. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( (3,2) \) is not a solution to the system because it does not satisfy either equation.

Solución

To determine whether the point \( (3, 2) \) is a solution to the system of equations: 1. \( y - x = 1 \) 2. \( -3x - 2y = 5 \) **Let's evaluate each equation separately:** 1. **First Equation:** \[ y - x = 1 \\ 2 - 3 = -1 \neq 1 \] The point \( (3, 2) \) does **not** satisfy the first equation. 2. **Second Equation:** \[ -3x - 2y = 5 \\ -3(3) - 2(2) = -9 - 4 = -13 \neq 5 \] The point \( (3, 2) \) does **not** satisfy the second equation either. Since \( (3, 2) \) does not satisfy **either** of the equations in the system, it is **not** a solution to the system. **Correct Answer:** - **No, because \( (3,2) \) is a solution to neither equation.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine whether \( (3,2) \) is a solution to the system, we need to substitute \( x = 3 \) and \( y = 2 \) into both equations. For the first equation \( y - x = 1 \): substituting gives \( 2 - 3 = -1 \), which is not true. For the second equation \( -3x - 2y = 5 \): substituting gives \( -3(3) - 2(2) = -9 - 4 = -13 \), which also doesn’t equal 5. Therefore, the point \( (3,2) \) is indeed a solution to neither equation. Being able to effectively solve systems of equations is super handy in various real-world situations. Think about it! Whether you're balancing a budget, planning the best route for delivery, or even figuring out your workout routine, systems of equations help you make decisions based on multiple conditions or constraints. It’s like being a detective, piecing together clues to find the best outcome!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad