Pregunta
upstudy study bank question image url

Fird the LCM and HCF of 1250 and 105

Ask by Newton Alexander. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The LCM of 1250 and 105 is 26,250, and the HCF is 5.

Solución

To find the Least Common Multiple (LCM) and Highest Common Factor (HCF) of 1250 and 105, we can follow these steps: 1. Find the prime factorization of both numbers. 2. Identify the common prime factors and their powers. 3. Calculate the LCM by multiplying all the prime factors with their highest powers. 4. Calculate the HCF by multiplying all the common prime factors with their lowest powers. Let's start by finding the prime factorization of 1250 and 105: 1. Prime factorization of 1250: \( 1250 = 2 \times 625 \) \( 625 = 5^4 \) So, \( 1250 = 2 \times 5^4 \) 2. Prime factorization of 105: \( 105 = 3 \times 35 \) \( 35 = 5 \times 7 \) So, \( 105 = 3 \times 5 \times 7 \) Now, we can identify the common prime factors and their powers: - The common prime factor is 5. - The power of 5 in 1250 is 4. - The power of 5 in 105 is 1. Next, we calculate the LCM and HCF: LCM = \( 2 \times 5^4 \times 3 \times 7 \) HCF = \( 5^1 \) Let's calculate the LCM and HCF. Calculate the value by following steps: - step0: Calculate: \(2\times 5^{4}\times 3\times 7\) - step1: Multiply the terms: \(42\times 5^{4}\) - step2: Evaluate the power: \(42\times 625\) - step3: Multiply: \(26250\) Calculate or simplify the expression \( 5^1 \). Calculate the value by following steps: - step0: Calculate: \(5^{1}\) - step1: Evaluate the power: \(5\) The LCM of 1250 and 105 is 26250, and the HCF is 5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the LCM and HCF of 1250 and 105, we start with their prime factorizations. The prime factors of 1250 are 2, 5^4, and for 105 they are 3, 5, and 7. The HCF (Highest Common Factor) is then obtained by taking the lowest power of the common prime factors, which is 5. Therefore, HCF = 5. For the LCM (Lowest Common Multiple), we take the highest powers of all prime factors: LCM = 2^1 × 3^1 × 5^4 × 7^1 = 17,500. So, HCF = 5 and LCM = 17,500! Consider that knowing how to find the HCF and LCM is super useful for simplifying fractions or solving problems involving multiples and divisors in everyday life, such as serving portions in a recipe. Imagine you’re baking and need to double a cake recipe for a party! Having these skills helps you manage your ingredients without overcomplicating things. If you’re diving deeper into these concepts, consider checking out classic math books that offer more problems on factors and multiples. "Elementary Number Theory" by David M. Bressoud is a great start. You might even stumble upon some cool historical anecdotes about how ancient civilizations approached number theory and computation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad