Pregunta
upstudy study bank question image url

Part 1 of 2 Determine whether the equation is linear or not. Then graph the equation by finding and plotting ordered-pair solutions. \( y=6 x^{2} \)

Ask by Parsons Norris. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation \( y = 6x^{2} \) is **non-linear** and its graph is a parabola opening upward with its vertex at the origin. Here's a simplified graph: ``` y | 24 | * * | | 18 | | | 12 | | | 6 | * * | | 0 |____*_____________________ x -2 -1 0 1 2 ``` Key points: - Vertex at (0, 0) - Symmetrical about the y-axis - Points (-2, 24), (-1, 6), (0, 0), (1, 6), and (2, 24) lie on the graph.

Solución

### Determining Linearity and Graphing the Equation \( y = 6x^{2} \) #### **1. Is the Equation Linear?** **Definition of a Linear Equation:** A linear equation in two variables, \( x \) and \( y \), has the general form: \[ y = mx + b \] where: - \( m \) is the slope, - \( b \) is the y-intercept. **Characteristics of Linear Equations:** - The highest power of \( x \) and \( y \) is 1. - The graph of a linear equation is a straight line. **Analyzing \( y = 6x^{2} \):** - The equation \( y = 6x^{2} \) has \( x \) raised to the power of 2. - This means the equation is **quadratic**, not linear. **Conclusion:** - **Non-linear**. #### **2. Graphing the Equation by Plotting Ordered Pairs** Since the equation is quadratic, its graph will be a **parabola**. Here's how to graph it step-by-step: **a. Create a Table of Values** Choose various \( x \)-values and compute the corresponding \( y \)-values using the equation \( y = 6x^{2} \). | \( x \) | \( y = 6x^{2} \) | Ordered Pair \( (x, y) \) | |---|---|---| | -2 | \( 6(-2)^{2} = 6 \times 4 = 24 \) | (-2, 24) | | -1 | \( 6(-1)^{2} = 6 \times 1 = 6 \) | (-1, 6) | | 0 | \( 6(0)^{2} = 0 \) | (0, 0) | | 1 | \( 6(1)^{2} = 6 \times 1 = 6 \) | (1, 6) | | 2 | \( 6(2)^{2} = 6 \times 4 = 24 \) | (2, 24) | **b. Plot the Ordered Pairs** Plot the points on a coordinate plane: ``` y | 24 | * * | 18 | | 12 | | 6 | * * | 0 |________________________ x -2 -1 0 1 2 ``` **c. Draw the Parabola** Connect the plotted points with a smooth, curved line forming a U-shaped parabola that opens upward. **Key Features of the Graph:** - **Vertex:** (0, 0) – the lowest point of the parabola. - **Axis of Symmetry:** The vertical line \( x = 0 \). - **Direction:** Opens **upward** because the coefficient of \( x^{2} \) is positive. #### **Final Graph** Here's a simplified representation of the graph: ``` y | 24 | * * | | 18 | | | 12 | | | 6 | * * | | 0 |____*_____________________ x -2 -1 0 1 2 ``` - The points \((-2, 24)\) and \((2, 24)\) are symmetrical about the y-axis. - The points \((-1, 6)\) and \((1, 6)\) are also symmetrical. - The origin \((0, 0)\) is the vertex of the parabola. Feel free to use graphing software or graph paper for a more accurate and detailed graph!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The equation \( y = 6x^2 \) is not linear because its variable \( x \) is raised to the second power, indicating that it represents a quadratic function. Linear equations take the form \( y = mx + b \), where the highest exponent of \( x \) is 1. To graph \( y = 6x^2 \), you can find ordered pairs by substituting various values of \( x \). For example, with \( x = -1 \), \( y = 6(-1)^2 = 6 \); for \( x = 0 \), \( y = 6(0)^2 = 0 \); and with \( x = 1 \), \( y = 6(1)^2 = 6 \). Plotting the points \((-1, 6)\), \((0, 0)\), and \((1, 6)\) will reveal the parabolic shape of the graph!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad