На каком из рисунков изображено решение неравенства? \( 15 x^{2}-27 x+12<0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Чтобы решить неравенство \( 15x^2 - 27x + 12 < 0 \), сначала найдем корни соответствующего уравнения. Мы можем воспользоваться формулой корней квадратного уравнения. Корни окажутся в пределах от \( x_1 \) до \( x_2 \). Затем на числовой прямой расставляем точки, и для промежутков между ними проверяем знак неравенства. Решением будут значения \( x \) в промежутках, где парабола ниже оси x. Если вы нарисуете график функции \( y = 15x^2 - 27x + 12 \), вы заметите, что парабола открыта вверх (поскольку коэффициент перед \( x^2 \) положительный) и пересекает ось x в двух точках. Таким образом, решение неравенства будет находиться между этими двумя корнями.