Pregunta
Solve. Write your answer in interval notation. \( -13 \leq 3+8 p \leq 11 \) Solution Interval Notation
Ask by Osborne Beck. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(-2 \leq p \leq 1\), which is written in interval notation as \([-2, 1]\).
Solución
To solve the inequality \( -13 \leq 3 + 8p \leq 11 \), follow these steps:
1. **Subtract 3 from all parts of the inequality:**
\[
-13 - 3 \leq 8p \leq 11 - 3
\]
\[
-16 \leq 8p \leq 8
\]
2. **Divide all parts by 8 to solve for \( p \):**
\[
\frac{-16}{8} \leq p \leq \frac{8}{8}
\]
\[
-2 \leq p \leq 1
\]
3. **Express the solution in interval notation:**
\[
[-2, 1]
\]
**Final Answer:**
\(\boxed{\,[-2,\ 1]\,}\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the double inequality \( -13 \leq 3 + 8p \leq 11 \), we first break it down into two parts. 1. For \( -13 \leq 3 + 8p \), subtract 3 from both sides: \(-16 \leq 8p\). Now divide by 8: \(-2 \leq p\) or \(p \geq -2\). 2. For \(3 + 8p \leq 11\), subtract 3 from both sides: \(8p \leq 8\). Again, divide by 8: \(p \leq 1\). Combining both parts, we get \( -2 \leq p \leq 1 \). In interval notation, the solution is \([-2, 1]\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium