Pregunta
upstudy study bank question image url

9. a) i) Define step function ii) The function is defined as \[ f(x)=\left\{\begin{array}{rr}-4 & \text { if } x<-2 \\ 2 \text { if }-2 \leq x \leq 3 \\ 5 & \text { if } x \geq 3\end{array}\right. \] Draw the graph of \( f(x) \) and state its domain and range, find \( f(-100) \), \( f\left(\frac{1}{2}\right) \). and \( f(203) \). b) Verify that \( x+4 \) is not a factor of the polynomial function \[ f(x)=x^{3}-9 x^{2}+10 x-24 . \] e) Sketch the graph of the function \( f(x) \) and hence state its domain and range. \( f(x)=\left\{\begin{array}{r}x^{2}+1 \text { for } x>1 \\ |x| \text { for }-2 \leq x \leq 1 \\ x+2 \text { for } x 2\end{array}\right. \)

Ask by Barker Stewart. in Tanzania
Jan 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**9. a) i) Step Function Definition** A **step function** is a piecewise constant function that remains at a constant value over specific intervals. Graphically, it looks like a series of horizontal steps. **9. a) ii) Function Analysis** Given: \[ f(x) = \begin{cases} -4 & \text{if } x < -2, \\ 2 & \text{if } -2 \leq x \leq 3, \\ 5 & \text{if } x \geq 3. \end{cases} \] - **Graph:** Horizontal lines at \( y = -4 \), \( y = 2 \), and \( y = 5 \) over their respective intervals. - **Domain:** All real numbers \( \mathbb{R} \). - **Range:** \(\{-4, 2, 5\}\). - **Evaluations:** - \( f(-100) = -4 \) - \( f\left(\frac{1}{2}\right) = 2 \) - \( f(203) = 5 \) **9. b) Factor Verification** \( x + 4 \) is **not** a factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \) because \( f(-4) = -272 \neq 0 \). **9. e) Piecewise Function Analysis** Given: \[ f(x) = \begin{cases} x^{2} + 1 & \text{if } x > 1, \\ |x| & \text{if } -2 \leq x \leq 1, \\ x + 2 & \text{if } x < -2. \end{cases} \] - **Graph:** - For \( x < -2 \): Line \( y = x + 2 \). - For \( -2 \leq x \leq 1 \): Absolute value graph. - For \( x > 1 \): Parabola \( y = x^{2} + 1 \). - **Domain:** All real numbers \( \mathbb{R} \). - **Range:** \( [0, \infty) \). **Summary:** - Defined and graphed step functions. - Evaluated specific function values. - Verified factors using the Factor Theorem. - Analyzed and graphed a piecewise function, determining its domain and range.

Solución

Certainly! Let's tackle each part of Problem 9 step by step. --- ### **9. a) i) Define Step Function** **Definition:** A **step function** is a piecewise constant function that increases or decreases abruptly from one constant value to another. Graphically, it resembles a series of steps, hence the name. Each "step" corresponds to a specific interval of the independent variable where the function holds a constant value. **Mathematically:** A step function can be defined as: \[ f(x) = \begin{cases} c_1 & \text{if } x \in I_1, \\ c_2 & \text{if } x \in I_2, \\ \vdots & \vdots \\ c_n & \text{if } x \in I_n, \end{cases} \] where \( c_1, c_2, \ldots, c_n \) are constants and \( I_1, I_2, \ldots, I_n \) are mutually exclusive intervals covering the domain of \( f(x) \). --- ### **9. a) ii) Analyzing the Given Function** Given the function: \[ f(x) = \begin{cases} -4 & \text{if } x < -2, \\ 2 & \text{if } -2 \leq x \leq 3, \\ 5 & \text{if } x \geq 3. \end{cases} \] #### **1. Graph of \( f(x) \)** To graph \( f(x) \), plot the constant values over their respective intervals: - **For \( x < -2 \):** \( f(x) = -4 \) - **For \( -2 \leq x \leq 3 \):** \( f(x) = 2 \) - **For \( x \geq 3 \):** \( f(x) = 5 \) **Graph:** ![Step Function Graph](https://i.imgur.com/lWE9Frj.png) *Note: The graph consists of horizontal lines at \( y = -4 \), \( y = 2 \), and \( y = 5 \) over their respective intervals. Use open or closed circles to indicate inclusivity at interval boundaries.* #### **2. Domain and Range** - **Domain:** All real numbers \( \mathbb{R} \), since \( f(x) \) is defined for every real \( x \). \[ \text{Domain} = (-\infty, \infty) \] - **Range:** The set of output values, which are the constants defined. \[ \text{Range} = \{-4, 2, 5\} \] #### **3. Evaluating \( f(-100) \), \( f\left(\frac{1}{2}\right) \), and \( f(203) \)** - **\( f(-100) \):** Since \( -100 < -2 \), \[ f(-100) = -4 \] - **\( f\left(\frac{1}{2}\right) \):** Since \( -2 \leq \frac{1}{2} \leq 3 \), \[ f\left(\frac{1}{2}\right) = 2 \] - **\( f(203) \):** Since \( 203 \geq 3 \), \[ f(203) = 5 \] --- ### **9. b) Verifying That \( x + 4 \) Is Not a Factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \)** To verify if \( x + 4 \) is a factor of \( f(x) \), we can use the **Factor Theorem**. The Factor Theorem states that \( (x - c) \) is a factor of a polynomial \( f(x) \) if and only if \( f(c) = 0 \). Here, \( x + 4 = 0 \) implies \( x = -4 \). We'll evaluate \( f(-4) \): \[ f(-4) = (-4)^3 - 9(-4)^2 + 10(-4) - 24 \] \[ = -64 - 9(16) - 40 - 24 \] \[ = -64 - 144 - 40 - 24 \] \[ = -272 \neq 0 \] **Conclusion:** Since \( f(-4) \neq 0 \), \( x + 4 \) is **not** a factor of \( f(x) \). --- ### **9. e) Sketching the Graph of \( f(x) \) and Determining Its Domain and Range** Given the function: \[ f(x) = \begin{cases} x^{2} + 1 & \text{for } x > 1, \\ |x| & \text{for } -2 \leq x \leq 1, \\ x + 2 & \text{for } x < -2. \end{cases} \] > **Note:** There seems to be a slight typo in the function definition provided. The last piece likely applies to \( x < -2 \) instead of "x 2". We'll proceed under this assumption. #### **1. Graph of \( f(x) \)** Let's analyze each piece: - **For \( x < -2 \):** \( f(x) = x + 2 \) This is a straight line with a slope of 1 and y-intercept at \( (0, 2) \). - **For \( -2 \leq x \leq 1 \):** \( f(x) = |x| \) This is the absolute value function, V-shaped with a vertex at \( (0, 0) \). - **For \( x > 1 \):** \( f(x) = x^{2} + 1 \) This is a parabola opening upwards with vertex at \( (0, 1) \), but only for \( x > 1 \). **Graph:** ![Piecewise Function Graph](https://i.imgur.com/6cFZzHL.png) *Description:* - **\( x < -2 \):** Line increasing from left, passes through \( (-2, 0) \). - **\( -2 \leq x \leq 1 \):** Absolute value graph from \( (-2, 2) \) to \( (0, 0) \) to \( (1, 1) \). - **\( x > 1 \):** Parabola starting at \( (1, 2) \) and increasing. #### **2. Domain and Range** - **Domain:** All real numbers \( \mathbb{R} \), as each piece covers a part of the real line without gaps. \[ \text{Domain} = (-\infty, \infty) \] - **Range:** Let's determine based on each piece: - **\( x < -2 \):** \( f(x) = x + 2 \). As \( x \) approaches \( -\infty \), \( f(x) \) approaches \( -\infty \). At \( x = -2 \), \( f(-2) = -2 + 2 = 0 \). - **\( -2 \leq x \leq 1 \):** \( f(x) = |x| \). The outputs range from \( 0 \) to \( 2 \). - **\( x > 1 \):** \( f(x) = x^{2} + 1 \). As \( x \) increases, \( f(x) \) increases without bound. At \( x = 1 \), \( f(1) = 1 + 1 = 2 \). Combining these: \[ \text{Range} = (-\infty, 2] \cup [2, \infty) = (-\infty, \infty) \] However, upon closer inspection: - The function approaches \( -\infty \) as \( x \to -\infty \). - The minimum value of \( f(x) \) is \( 0 \) at \( x = 0 \). Therefore, the corrected range is: \[ \text{Range} = [0, \infty) \] --- **Summary:** - **9.a.i)** Defined the step function. - **9.a.ii)** Graphed the step function, determined its domain \((-∞, ∞)\) and range \(\{-4, 2, 5\}\), and evaluated \( f(-100) = -4 \), \( f\left(\frac{1}{2}\right) = 2 \), and \( f(203) = 5 \). - **9.b)** Verified using the Factor Theorem that \( x + 4 \) is not a factor of \( f(x) = x^{3} - 9x^{2} + 10x - 24 \). - **9.e)** Sketched the piecewise function \( f(x) \), determined its domain as all real numbers \((-∞, ∞)\), and its range as \([0, ∞)\). Feel free to reach out if you have any further questions or need additional clarifications!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

A step function is like a staircase; it's a piecewise function that jumps from one value to another without ever taking on the values in between. When you graph it, you’ll have flat segments that represent constant values, with sudden jumps at specified points. It’s often used in real-world scenarios like billing, where costs hike up at certain thresholds! In the case of the function provided, its domain is all real numbers, while the range consists of the unique output values: -4, 2, and 5. For the calculations, we see that \( f(-100) = -4 \) (since -100 is less than -2), \( f\left(\frac{1}{2}\right) = 2 \) (as \( \frac{1}{2} \) falls between -2 and 3), and \( f(203) = 5 \) (since 203 is greater than 3). To verify that \( x + 4 \) is not a factor of the polynomial \( f(x) = x^{3} - 9x^{2} + 10x - 24 \), you can use the Factor Theorem. According to this theorem, a polynomial \( f(x) \) has \( x + c \) as a factor if \( f(-c) = 0 \). Here, substituting \( x = -4 \) yields \( f(-4) = (-4)^{3} - 9(-4)^{2} + 10(-4) - 24 \), resulting in a non-zero value, confirming \( x + 4 \) is indeed not a factor. When sketching the second function, we can see it combines different behaviors. The domain is from negative infinity to positive infinity, while the range is from 1 to infinity for \( x > 1 \), [0, 1] for \( -2 \leq x \leq 1 \), and from 2 to infinity for \( x \geq 2 \). Overall, it provides a neat example of how piecewise definitions can elegantly describe various functional behaviors!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad