\( \frac{3^{3 n-1} \cdot 9^{n} \cdot 3}{9^{3 n}} \quad \) Simplify
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To simplify the expression \( \frac{3^{3 n-1} \cdot 9^{n} \cdot 3}{9^{3 n}} \), we first rewrite \(9\) in terms of base \(3\): \[ 9 = 3^2 \implies 9^{n} = (3^2)^{n} = 3^{2n} \quad \text{and} \quad 9^{3 n} = (3^2)^{3n} = 3^{6n} \] Now, substitute back into the expression: \[ \frac{3^{3 n-1} \cdot 3^{2n} \cdot 3}{3^{6n}} \] Next, combine the powers of \(3\) in the numerator: \[ 3^{3 n - 1 + 2n + 1} = 3^{5n} \] Now, the expression becomes: \[ \frac{3^{5n}}{3^{6n}} = 3^{5n - 6n} = 3^{-n} \] Finally, we can write \(3^{-n}\) as: \[ \frac{1}{3^{n}} \] Thus, the simplified expression is: \[ \frac{1}{3^{n}} \]