3. The expression \( \sqrt{-x^{2}+6 x-5} \) has a (A) maximum value of 2 (B) minimum value of 2 (C) maximum value of 3 (D) minimum value of 3
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve for the maximum value of the expression \( \sqrt{-x^2 + 6x - 5} \), we first focus on the quadratic part, which is \( -x^2 + 6x - 5 \). This is a downward-opening parabola. To find its vertex (the maximum point), we can use the formula \( x = -\frac{b}{2a} \), where \( a = -1 \) and \( b = 6 \). Calculating gives \( x = -\frac{6}{2(-1)} = 3 \). Plugging \( x = 3 \) back into the quadratic expression, we find that it equals \( -3^2 + 6 \cdot 3 - 5 = 4 \). Therefore, the maximum value of \( \sqrt{-x^2 + 6x - 5} \) is \( \sqrt{4} \), which is \( 2 \). Hence, the correct answer is (A) maximum value of 2.