Pregunta
upstudy study bank question image url

\( \sum _ { k = 1 } ^ { m } ( 6 k - 8 ) < 2600 \)

Ask by Black Hodges. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The largest integer \( m \) satisfying the inequality is \( m = 30 \).

Solución

To solve the inequality: \[ \sum_{k=1}^{m} (6k - 8) < 2600 \] **Step 1: Simplify the Sum** First, calculate the sum: \[ \sum_{k=1}^{m} (6k - 8) = 6\sum_{k=1}^{m} k - 8m \] Using the formula for the sum of the first \( m \) positive integers: \[ \sum_{k=1}^{m} k = \frac{m(m + 1)}{2} \] Substitute back into the original sum: \[ 6 \cdot \frac{m(m + 1)}{2} - 8m = 3m(m + 1) - 8m = 3m^2 + 3m - 8m = 3m^2 - 5m \] **Step 2: Formulate the Inequality** Now, set up the inequality: \[ 3m^2 - 5m < 2600 \] Rearrange it into a standard quadratic inequality: \[ 3m^2 - 5m - 2600 < 0 \] **Step 3: Find the Roots of the Quadratic Equation** Solve the quadratic equation \( 3m^2 - 5m - 2600 = 0 \) using the quadratic formula: \[ m = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-2600)}}{2 \cdot 3} = \frac{5 \pm \sqrt{25 + 31200}}{6} = \frac{5 \pm \sqrt{31225}}{6} = \frac{5 \pm 177}{6} \] This gives two solutions: \[ m = \frac{182}{6} \approx 30.333 \quad \text{and} \quad m = \frac{-172}{6} \approx -28.666 \] **Step 4: Determine the Valid Range for \( m \)** Since \( m \) must be a positive integer, the inequality \( 3m^2 - 5m - 2600 < 0 \) holds for: \[ m < 30.333 \] Therefore, the largest integer \( m \) that satisfies the inequality is \( m = 30 \). **Verification:** - For \( m = 30 \): \[ 3(30)^2 - 5(30) = 2700 - 150 = 2550 < 2600 \] - For \( m = 31 \): \[ 3(31)^2 - 5(31) = 2883 - 155 = 2728 > 2600 \] Thus, the solution is confirmed. **Answer:** The largest integer \( m \) satisfying the inequality is \( m = 30 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( \sum_{k=1}^{m} (6k - 8) < 2600 \), we start by finding the sum. The expression inside the summation, \( 6k - 8 \), can be split into two parts: \( 6k \) and \(-8\). First, we calculate the sum of \( 6k \): \[ \sum_{k=1}^{m} 6k = 6 \sum_{k=1}^{m} k = 6 \cdot \frac{m(m+1)}{2} = 3m(m+1). \] Next, we calculate the sum of \(-8\): \[ \sum_{k=1}^{m} -8 = -8m. \] Now, combining these results gives us: \[ \sum_{k=1}^{m} (6k - 8) = 3m(m+1) - 8m = 3m^2 + 3m - 8m = 3m^2 - 5m. \] Now, we need to set up the inequality: \[ 3m^2 - 5m < 2600. \] Rearranging this, we have: \[ 3m^2 - 5m - 2600 < 0. \] Next, we can solve the quadratic equation \( 3m^2 - 5m - 2600 = 0 \) using the quadratic formula, \( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 3, b = -5, c = -2600 \): First, calculate the discriminant: \[ D = b^2 - 4ac = (-5)^2 - 4 \cdot 3 \cdot (-2600) = 25 + 31200 = 31225. \] Now, calculate \( m \): \[ m = \frac{-(-5) \pm \sqrt{31225}}{2 \cdot 3} = \frac{5 \pm 176.5}{6}. \] Calculating the two potential results: 1. \( m_1 = \frac{5 + 176.5}{6} = \frac{181.5}{6} \approx 30.25 \) (we only take the integer part) 2. \( m_2 = \frac{5 - 176.5}{6} = \frac{-171.5}{6} \) (not a valid solution since \( m \) must be positive) Thus, the largest integer \( m \) less than 30.25 is 30. To verify: \[ 3(30)^2 - 5(30) = 2700 - 150 = 2550. \] Since \( 2550 < 2600 \), it satisfies the inequality. Thus, the solution is: \[ m \leq 30. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad