10. Given the prime factorisation of each of the following numbers, find its square root without using a calculator. \( \begin{array}{ll}\text { (a) } 9801=3^{4} \times 11^{2} & \text { (b) } 35721=3^{6} \times 7^{2}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the square root of \( 9801 = 3^{4} \times 11^{2} \), we can take the square root of each prime factor. The square root of \( 3^{4} \) is \( 3^{2} = 9 \), and the square root of \( 11^{2} \) is \( 11^{1} = 11 \). So, the square root of \( 9801 \) is \( 9 \times 11 = 99 \). For \( 35721 = 3^{6} \times 7^{2} \), we apply the same method. The square root of \( 3^{6} \) is \( 3^{3} = 27 \), and the square root of \( 7^{2} \) is \( 7^{1} = 7 \). Therefore, the square root of \( 35721 \) is \( 27 \times 7 = 189 \). So, the square roots are: (a) \( \sqrt{9801} = 99 \) (b) \( \sqrt{35721} = 189 \)