Pregunta
upstudy study bank question image url

\begin{tabular}{l} Explain whty \( 5^{\frac{4}{3}} \) must be equal to \( \sqrt[3]{5^{4}} \) if the Power of a Power Property holds for rational exponents. \\ The expression \( 5^{\frac{4}{3}} \) can be rewritten as \\ \hline This can be rewritten as \( \sqrt[3]{5^{4}} \). Thus, if the Power of a Power Property holds for rational exponents, then \( 5^{\frac{4}{3}} \) must be equal to \( \sqrt[3]{5^{4}} \). \\ \hline\end{tabular}

Ask by Wood Bates. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 5^{\frac{4}{3}} \) is equal to \( \sqrt[3]{5^{4}} \) because raising a number to a fractional exponent means taking the root of the number raised to the numerator of the exponent.

Solución

To explain why \( 5^{\frac{4}{3}} \) must be equal to \( \sqrt[3]{5^{4}} \) under the Power of a Power Property for rational exponents, let's break it down step by step. 1. **Understanding Rational Exponents**: The expression \( a^{\frac{m}{n}} \) can be interpreted as \( \sqrt[n]{a^m} \). This means that the exponent \( \frac{m}{n} \) indicates both a power and a root. 2. **Applying the Definition**: For the specific case of \( 5^{\frac{4}{3}} \): \[ 5^{\frac{4}{3}} = 5^{4 \cdot \frac{1}{3}} = (5^4)^{\frac{1}{3}} \] This shows that we first raise \( 5 \) to the power of \( 4 \), and then take the cube root of that result. 3. **Using the Power of a Power Property**: The Power of a Power Property states that \( (a^m)^n = a^{m \cdot n} \). In our case: \[ (5^4)^{\frac{1}{3}} = 5^{4 \cdot \frac{1}{3}} = 5^{\frac{4}{3}} \] 4. **Rewriting the Expression**: The expression \( (5^4)^{\frac{1}{3}} \) can also be expressed using the radical notation: \[ (5^4)^{\frac{1}{3}} = \sqrt[3]{5^4} \] 5. **Conclusion**: Therefore, we can conclude that: \[ 5^{\frac{4}{3}} = \sqrt[3]{5^4} \] This equality holds true if the Power of a Power Property is valid for rational exponents. Thus, we have shown that \( 5^{\frac{4}{3}} \) must indeed be equal to \( \sqrt[3]{5^{4}} \) based on the definitions and properties of exponents.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

If you're curious about powers and exponents, consider this: The Power of a Power Property states that \( (a^m)^n = a^{m \cdot n} \). This idea extends beautifully to rational exponents! When you have \( 5^{\frac{4}{3}} \), it tells you that it’s like taking \( 5^4 \) and then taking the cube root of that result, hence \( \sqrt[3]{5^4} \). It's a smooth transition that showcases the elegance of mathematics! In practice, this concept comes alive in areas such as physics and engineering where you might encounter formulas dealing with volume or energy. For example, if you were calculating the volume of a cube and wanted to express it in terms of side length, you'd often deal with cube roots and rational exponents. Knowing that \( 5^{\frac{4}{3}} \) is equal to \( \sqrt[3]{5^4} \) allows you to fluidly manipulate these equations without getting boxed in by complicated calculations. Math is not just numbers; it’s a toolkit for solving real-world problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad