Pregunta
upstudy study bank question image url

Factor \( b^{2}-2 b^{2}+3 b-6 \)

Ask by Lewis Jimenez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \( b^{2} - 2b^{2} + 3b - 6 \) simplifies to \( -b^{2} + 3b - 6 \). This quadratic does not factor further using real numbers.

Solución

Let's factor the expression: \[ b^{2} - 2b^{2} + 3b - 6 \] First, simplify the expression by combining like terms: \[ b^{2} - 2b^{2} + 3b - 6 = -b^{2} + 3b - 6 \] To factor this quadratic expression, it's often helpful to factor out the leading coefficient (in this case, \(-1\)): \[ -b^{2} + 3b - 6 = -\left(b^{2} - 3b + 6\right) \] Now, let's try to factor the quadratic inside the parentheses: \[ b^{2} - 3b + 6 \] To factor \(b^{2} - 3b + 6\), we look for two numbers that multiply to \(6\) and add to \(-3\). However, there are no real numbers that satisfy these conditions because the discriminant (\(b^2 - 4ac\)) is negative: \[ \text{Discriminant} = (-3)^2 - 4(1)(6) = 9 - 24 = -15 \] Since the discriminant is negative, \(b^{2} - 3b + 6\) does not factor over the real numbers. **Conclusion:** The expression cannot be factored further using real numbers. However, if you're working in the context of real numbers, you can express it as: \[ -b^{2} + 3b - 6 = -\left(b^{2} - 3b + 6\right) \] If you need to factor it over the complex numbers, it would be: \[ -b^{2} + 3b - 6 = -\left(b - \frac{3}{2} + \frac{\sqrt{15}}{2}i\right)\left(b - \frac{3}{2} - \frac{\sqrt{15}}{2}i\right) \] But typically, unless specified, factoring is done over the real numbers. **Final Answer:** The expression factors as –( b² – 3b + 6 ), which cannot be factored further using real numbers.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's simplify the expression a bit! Combining \(b^{2}\) terms gives us \(-b^{2} + 3b - 6\). Now, we want to factor this quadratic expression. To do this, we can look for two numbers that multiply to \(-6\) (the constant term) and add to \(3\) (the coefficient of \(b\)). Those numbers are \(6\) and \(-1\). So, we can rewrite the quadratic as \(-b^{2} + 6b - 1b - 6\), which factors to \(- (b - 6)(b + 1)\). But hey, don’t forget to multiply it all back out to check your work! Expanding \(- (b - 6)(b + 1)\) gives you the original expression, confirming that you factored it correctly! That’s how we roll with polynomials! 😊

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad