Consider the quadratic number pattern: \( -145 ;-122 ;-101 ; \ldots \) 3.1 \( \begin{array}{ll}\text { Write down the value of } T_{4}\end{array} \) \( \begin{array}{ll}\text { Show that the general term of this number pattern is } T_{n}=-n^{2}+26 n-170\end{array} \) 3.3 of -121 ? \( \begin{array}{l}\text { What value must be added to each term in the number pattern so that the value of the }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( T_4 \), let's identify the difference between the terms. The differences are 23, 21, and you can see the difference decreases by 2. Continuing this pattern, the next difference should be 19: so, the fourth term \( T_4 = -101 + 19 = -82 \). Now, to show \( T_n = -n^2 + 26n - 170 \), we can substitute successive values of \( n \) into the formula. For \( n = 1 \), \( T_1 = -1^2 + 26(1) - 170 = -145 \), which matches. For \( n = 2 \), \( T_2 = -2^2 + 26(2) - 170 = -122 \), and for \( n = 3 \), \( T_3 = -3^2 + 26(3) - 170 = -101 \). Since it fits for these values, the formula is validated. To achieve a term of -121, we first need to analyze which term we are aiming for. Since \( -121 \) is between \( T_2 \) and \( T_3 \), we can find an offset. Adding \( 2 \) to \( -123 \) results in \( -121 \). Thus, we can add 2 to each term in the pattern to achieve the desired value.