Pregunta
The clock face in a famous clock tower has a radius of about 3 meters. What is the area of the clock face to the nearest square meter? Use 3.14 as an approximation for \( \pi \). . 28 square meters 19 square meters o square meters 113 square meters
Ask by Evans Boyd. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The area of the clock face is approximately 28 square meters.
Solución
To calculate the area of the clock face, you can use the formula for the area of a circle:
\[
\text{Area} = \pi r^2
\]
Where:
- \( r \) is the radius of the circle.
- \( \pi \) is approximately 3.14.
Given:
- Radius (\( r \)) = 3 meters
Plugging in the values:
\[
\text{Area} = 3.14 \times (3)^2 = 3.14 \times 9 = 28.26 \text{ square meters}
\]
Rounding to the nearest whole number:
\[
\text{Area} \approx 28 \text{ square meters}
\]
**Answer:** 28 square meters
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To calculate the area of the clock face, you can use the formula for the area of a circle, which is \( A = \pi r^2 \). With a radius \( r \) of 3 meters and using \( \pi \) as 3.14, the calculation is: \( A = 3.14 \times (3^2) = 3.14 \times 9 = 28.26 \) Rounding to the nearest square meter, the area is approximately 28 square meters. So, the answer is 28 square meters!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium