Pregunta
\( 1 \leftarrow \quad \) Solve using the addition principlo. Don'l forget to check \( -5+x=32 \)
Ask by Ortiz Williams. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 37 \)
Solución
To solve the equation \( -5 + x = 32 \) using the **addition principle**, follow these steps:
### Step 1: Add 5 to Both Sides
The addition principle states that if you add the same number to both sides of an equation, the equality remains balanced. To isolate \( x \), add 5 to both sides of the equation:
\[
-5 + x + 5 = 32 + 5
\]
### Step 2: Simplify Both Sides
Simplify the left and right sides of the equation:
\[
x = 37
\]
### Step 3: Check the Solution
It's important to verify that the solution satisfies the original equation. Substitute \( x = 37 \) back into the original equation:
\[
-5 + x = 32
\]
\[
-5 + 37 = 32
\]
\[
32 = 32
\]
Since both sides of the equation are equal, the solution \( x = 37 \) is correct.
### **Final Answer**
\[
x = 37
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \( -5 + x = 32 \), we want to isolate \( x \). Using the addition principle, we can do this by adding 5 to both sides of the equation. This gives us \( -5 + x + 5 = 32 + 5 \), simplifying to \( x = 37 \). Now, let’s check our solution! We substitute \( x = 37 \) back into the original equation: \( -5 + 37 = 32 \), which simplifies to \( 32 = 32 \). Since both sides are equal, our solution is verified!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium