Pregunta
Evaluate the following indefinite integral. \( \int x \sqrt{x^{3}} d x \) \( \int x \sqrt{x^{3}} d x=\square \)
Ask by Davison Little. in the United States
Dec 07,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \frac{2}{7}x^{3}\sqrt{x} + C \)
Solución
Calculate the integral \( \int x \sqrt{x^{3}} dx \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int x\sqrt{x^{3}} dx\)
- step1: Simplify the root:
\(\int x\times x\sqrt{x} dx\)
- step2: Multiply the terms:
\(\int x^{2}\sqrt{x} dx\)
- step3: Prepare for integration by parts:
\(\begin{align}&u=x^{2}\\&dv=\sqrt{x}dx\end{align}\)
- step4: Calculate the derivative:
\(\begin{align}&du=2xdx\\&dv=\sqrt{x}dx\end{align}\)
- step5: Evaluate the integral:
\(\begin{align}&du=2xdx\\&v=\frac{2}{3}x^{\frac{3}{2}}\end{align}\)
- step6: Substitute the values into formula:
\(x^{2}\times \frac{2}{3}x^{\frac{3}{2}}-\int 2x\times \frac{2}{3}x^{\frac{3}{2}} dx\)
- step7: Calculate:
\(\frac{2}{3}x^{\frac{7}{2}}-\int \frac{4}{3}x^{\frac{5}{2}} dx\)
- step8: Evaluate the integral:
\(\frac{2}{3}x^{\frac{7}{2}}-\frac{8}{21}x^{\frac{7}{2}}\)
- step9: Collect like terms:
\(\left(\frac{2}{3}-\frac{8}{21}\right)x^{\frac{7}{2}}\)
- step10: Subtract the numbers:
\(\frac{2}{7}x^{\frac{7}{2}}\)
- step11: Simplify:
\(\frac{2}{7}x^{3}\sqrt{x}\)
- step12: Add the constant of integral C:
\(\frac{2}{7}x^{3}\sqrt{x} + C, C \in \mathbb{R}\)
The indefinite integral of \( \int x \sqrt{x^{3}} dx \) is \( \frac{2}{7}x^{3}\sqrt{x} + C \), where \( C \) is an arbitrary constant.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To evaluate the integral \( \int x \sqrt{x^{3}} \, dx \), we first simplify the integrand. Notice that \( \sqrt{x^3} = x^{3/2} \). Therefore, we can rewrite the integral as: \[ \int x \cdot x^{3/2} \, dx = \int x^{1 + 3/2} \, dx = \int x^{5/2} \, dx \] Now, we can integrate \( x^{5/2} \): \[ \int x^{5/2} \, dx = \frac{x^{5/2 + 1}}{5/2 + 1} + C = \frac{x^{7/2}}{7/2} + C = \frac{2}{7} x^{7/2} + C \] Thus, the final answer is: \[ \int x \sqrt{x^{3}} \, dx = \frac{2}{7} x^{7/2} + C \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium