Pregunta
upstudy study bank question image url

Quostion 5 pause zoom What is the solution to this systems of equations. \[ \begin{array}{l} y=2 x+4 \\ y=2 x+1 \end{array} \] Select Two that apply A. The systems of equations create one solution. B. The slopes are different but, the \( y \)-intercepts are the same. C. The systems of equations create infinitely many solutions D. The slopes are the same but, the \( y \)-intercepts are different. E. The systems of equations create no solution.

Ask by Pearson Weber. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct options are D and E. D. The slopes are the same but, the \( y \)-intercepts are different. E. The systems of equations create no solution.

Solución

Let's analyze the given system of equations: \[ \begin{cases} y = 2x + 4 \\ y = 2x + 1 \end{cases} \] 1. **Slope Comparison**: - Both equations have the same slope (\( m = 2 \)). 2. **Y-Intercept Comparison**: - The first equation has a y-intercept of \( 4 \). - The second equation has a y-intercept of \( 1 \). Since both lines have the **same slope** but **different y-intercepts**, they are **parallel** and will **never intersect**. This means: - There is **no solution** to the system because there is no point \((x, y)\) that satisfies both equations simultaneously. **Evaluating the Options:** - **A. The systems of equations create one solution.** - **Incorrect**. Parallel lines do not intersect, so there is no solution. - **B. The slopes are different but, the \( y \)-intercepts are the same.** - **Incorrect**. The slopes are the **same**, and the y-intercepts are **different**. - **C. The systems of equations create infinitely many solutions.** - **Incorrect**. This would only be true if both equations were identical. - **D. The slopes are the same but, the \( y \)-intercepts are different.** - **Correct**. This accurately describes the given system. - **E. The systems of equations create no solution.** - **Correct**. Parallel lines do not intersect, resulting in no solution. **Therefore, the correct options are D and E.** **Answer:** D. The slopes are the same but, the \( y \)-intercepts are different. E. The systems of equations create no solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The slopes of both equations are the same: \(2\). However, their \(y\)-intercepts differ; one intercepts the y-axis at \(4\) while the other at \(1\). This indicates that they are parallel lines, which means they will never intersect. Thus, the two correct answers are: D. The slopes are the same but, the \(y\)-intercepts are different. E. The systems of equations create no solution.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad