f the first 4 terms of a geometric sequence are \( \{7,21,63,189\} \), then ormula for the \( n^{\text {th }} \) term in the sequence is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In a geometric sequence, each term is found by multiplying the previous term by a constant called the common ratio. Here, the common ratio is \( \frac{21}{7} = 3 \). You can obtain each subsequent term by multiplying the previous term by \( 3 \). So, the general formula for the \( n^{\text{th}} \) term of this sequence can be expressed as \( a_n = 7 \cdot 3^{(n-1)} \). If you'd like to calculate the \( n^{\text{th}} \) term for any value of \( n \), just substitute \( n \) into the formula! For example, if \( n = 5 \), then \( a_5 = 7 \cdot 3^{(5-1)} = 7 \cdot 81 = 567 \). Fun, right?