Pregunta
upstudy study bank question image url

Use the Quadratic Formula to solve the quadratic equatio \[ x^{2}+8 x+17=0 \] \( x=\square \)

Ask by Evans Mcdonald. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no real solutions for \( x \) in the equation \( x^{2}+8x+17=0 \).

Solución

Solve the equation \( x^{2}+8x+17=0 \). Solve the equation(The complex numbers system) by following steps: - step0: Solve using the quadratic formula in the complex numbers system: \(x^{2}+8x+17=0\) - step1: Solve using the quadratic formula: \(x=\frac{-8\pm \sqrt{8^{2}-4\times 17}}{2}\) - step2: Simplify the expression: \(x=\frac{-8\pm \sqrt{-4}}{2}\) - step3: Simplify the expression: \(x=\frac{-8\pm 2i}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{-8+2i}{2}\\&x=\frac{-8-2i}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=-4+i\\&x=\frac{-8-2i}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=-4+i\\&x=-4-i\end{align}\) - step7: Rewrite: \(x_{1}=-4-i,x_{2}=-4+i\) - step8: Remove the complex number(s): \(\textrm{No real solution}\) The quadratic equation \(x^{2}+8x+17=0\) does not have any real solutions. Therefore, the solution to the equation is \(x=\square\), where \(\square\) represents no real solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the quadratic equation \( x^{2}+8x+17=0 \) using the Quadratic Formula, we first identify the coefficients \( a = 1 \), \( b = 8 \), and \( c = 17 \). The Quadratic Formula is given by: \[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \] Plugging in the values, we get: \[ x = \frac{{-8 \pm \sqrt{{8^2 - 4 \times 1 \times 17}}}}{2 \times 1} = \frac{{-8 \pm \sqrt{{64 - 68}}}}{2} \] This simplifies to: \[ x = \frac{{-8 \pm \sqrt{{-4}}}}{2} = \frac{{-8 \pm 2i}}{2} = -4 \pm i \] So the solutions are: \[ x = -4 + i \quad \text{and} \quad x = -4 - i \] These solutions are complex numbers since the discriminant \( b^2 - 4ac \) is negative. In the world of quadratic equations, it may seem like you're just solving for numbers, but these complex solutions can represent physical phenomena, such as waves or electrical circuits. When you play with these complex roots, you're not just dabbling in math; you're uncovering hidden relationships in real-life engineering problems! If you're ever feeling confused with using the Quadratic Formula, remember that keeping your calculations organized is key! Common mistakes include miscalculating the discriminant or flipping signs, so double-check each step. It’s also helpful to sketch a rough graph to visualize the roots, even if they are not on the real number line.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad