(b) Given that \( 96=2^{5} \times 3 \), calculate the common factor of 72 and 96 .
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the common factor of 72 and 96, we first break down 72 into its prime factorization. We have: \[ 72 = 2^3 \times 3^2. \] Now we know the prime factorizations: \( 96 = 2^{5} \times 3^1 \) and \( 72 = 2^{3} \times 3^{2} \). To determine the common factors, we take the minimum exponent for each prime factor: - For 2, the minimum is \( \min(5, 3) = 3 \). - For 3, the minimum is \( \min(1, 2) = 1 \). Putting it together, we find the common factors: \[ \text{Common factor} = 2^{3} \times 3^{1} = 8 \times 3 = 24. \] Therefore, the common factor of 72 and 96 is 24.