Find the real zeros of the trigonometric function on the interval \( 0 \leq \theta<2 \pi \). \( f f(x)=6 \boldsymbol{\operatorname { s i n }}(2 x)-6 \boldsymbol{\operatorname { s i n }} x \) The real zeros are (Use a comma to separate answers as needed. Type exact answers, using \( \pi \) as needed. Use integers or fractions for any numbers in the expressions.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the real zeros of the function \( f(x) = 6 \sin(2x) - 6 \sin(x) \), we can start by setting this equal to zero: \[ 6 \sin(2x) - 6 \sin(x) = 0 \] Dividing by 6 gives us: \[ \sin(2x) - \sin(x) = 0 \] Using the double angle identity, \( \sin(2x) = 2 \sin(x) \cos(x) \), we can rewrite the equation: \[ 2 \sin(x) \cos(x) - \sin(x) = 0 \] Factoring out \( \sin(x) \): \[ \sin(x)(2 \cos(x) - 1) = 0 \] Setting each factor to zero gives us two cases: 1. \( \sin(x) = 0 \) 2. \( 2 \cos(x) - 1 = 0 \) For \( \sin(x) = 0 \), we find: \[ x = 0, \pi, 2\pi \] However, since we are looking in the interval \( 0 \leq x < 2\pi \), the relevant solutions are: \[ x = 0, \pi \] For \( 2 \cos(x) - 1 = 0 \), we solve for \( \cos(x) = \frac{1}{2} \): \[ x = \frac{\pi}{3}, \frac{5\pi}{3} \] Combining the results, the real zeros of the function \( f(x) \) in the interval \( 0 \leq x < 2\pi \) are: \[ 0, \pi, \frac{\pi}{3}, \frac{5\pi}{3} \]