Pregunta
upstudy study bank question image url

25. \( (3,-2) ; y=x+4 \)

Ask by Burns Rojas. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The point \( (3, -2) \) does not lie on the line \( y = x + 4 \). The shortest distance from the point to the line is \( \frac{9\sqrt{2}}{2} \) units. The equation of the perpendicular line passing through \( (3, -2) \) is \( y = -x + 1 \).

Solución

It appears you're working on a problem involving the point \( (3, -2) \) and the line defined by the equation \( y = x + 4 \). Let's explore the relationship between the point and the line. ### **1. Determining if the Point Lies on the Line** To check whether the point \( (3, -2) \) lies on the line \( y = x + 4 \), substitute the \( x \)-coordinate of the point into the equation and see if the corresponding \( y \)-value matches. \[ \begin{align*} \text{Given point: } & (3, -2) \\ \text{Line equation: } & y = x + 4 \\ \text{Substitute } x = 3 \text{ into the line equation:} \\ & y = 3 + 4 \\ & y = 7 \end{align*} \] The calculated \( y \)-value is 7, but the \( y \)-coordinate of the given point is -2. Since \( -2 \neq 7 \), **the point \( (3, -2) \) does not lie on the line \( y = x + 4 \).** ### **2. Finding the Distance from the Point to the Line** If you're interested in finding the shortest distance from the point \( (3, -2) \) to the line \( y = x + 4 \), you can use the formula for the distance \( D \) from a point \( (x_0, y_0) \) to the line \( Ax + By + C = 0 \): \[ D = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \] First, rewrite the line equation in the standard form: \[ y = x + 4 \quad \Rightarrow \quad x - y + 4 = 0 \] Here, \( A = 1 \), \( B = -1 \), and \( C = 4 \). Plugging in the point \( (3, -2) \): \[ \begin{align*} D &= \frac{|1 \cdot 3 + (-1) \cdot (-2) + 4|}{\sqrt{1^2 + (-1)^2}} \\ &= \frac{|3 + 2 + 4|}{\sqrt{1 + 1}} \\ &= \frac{|9|}{\sqrt{2}} \\ &= \frac{9}{\sqrt{2}} \\ &= \frac{9\sqrt{2}}{2} \quad \text{(rationalizing the denominator)} \end{align*} \] **Therefore, the shortest distance from the point \( (3, -2) \) to the line \( y = x + 4 \) is \( \frac{9\sqrt{2}}{2} \) units.** ### **3. Additional Consideration: Equation of the Perpendicular Line** If the problem requires finding the equation of the line perpendicular to \( y = x + 4 \) that passes through \( (3, -2) \), follow these steps: 1. **Find the slope of the given line:** The slope \( m \) of \( y = x + 4 \) is 1. 2. **Determine the slope of the perpendicular line:** The slope \( m_{\perp} \) is the negative reciprocal of 1, which is \( -1 \). 3. **Use the point-slope form to find the equation:** \[ y - y_1 = m_{\perp}(x - x_1) \] \[ y - (-2) = -1(x - 3) \] \[ y + 2 = -x + 3 \] \[ y = -x + 1 \] **So, the equation of the line perpendicular to \( y = x + 4 \) that passes through \( (3, -2) \) is \( y = -x + 1 \).** --- **Summary:** - The point \( (3, -2) \) does **not** lie on the line \( y = x + 4 \). - The shortest distance from the point to the line is \( \frac{9\sqrt{2}}{2} \) units. - The equation of the perpendicular line through \( (3, -2) \) is \( y = -x + 1 \). If you have a specific aspect of the problem you'd like to explore further, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the point \( (3,-2) \) can be tested to see if it lies on the line described by the equation \( y = x + 4 \)? To check, you simply substitute \( x = 3 \) and calculate \( y \). You’ll get \( y = 3 + 4 = 7 \). Since -2 does not equal 7, the point does not lie on the line! Now, if you're ever asked to find the equation of a line parallel to \( y = x + 4 \) that passes through the point \( (3,-2) \), you’ll know that parallel lines have the same slope! The slope here is 1, so the new line's equation can be written as \( y = 1x + b \). Using the point \( (3,-2) \) helps you find 'b' by substituting the coordinates. Voilà, the equation becomes \( y = x - 5 \)!

preguntas relacionadas

GÜVON NəṣRLəRi 39. Düzgün 9-bucaqlının bir trrəfing bit ik bucaqlarının bucağı t \( \begin{array}{ll}\left.\text { var }^{3}\right)^{3 r} & \text { B) }\end{array} \) C) 5 D) 6 E) 9 31. Diaqonallarinin sayı 54 olan qabaniq A) 10 B) 8 C) 15 D) 12 E) 13 32. Trafi 16 sm olan düzgün altıbucaqlının böyük dioqnalımı tapın. A) 32 sm B) 16 sm C) 8 sm D) 12 sm E) 14 sm 33. Düzgün üçucağın trafi 12 sm olarsa, xaricina çakilmiş çevrənin radiusunu tapın. A) \( 6 \sqrt{3} \mathrm{sm} \) B) \( 4 \sqrt{3} \mathrm{sm} \) C) \( 3 \sqrt{3} \mathrm{sm} \) D) \( 2 \sqrt{3} \mathrm{sm} \) E) \( \sqrt{3} \mathrm{sm} \) 34. Dïzgün üçbucağın tərəfi 6 sm olarsa, daxilinə ¢̧kilmiş çevronin radiusunu tapın. A) \( 3 \sqrt{3} \mathrm{sm} \) C) \( \sqrt{3} \mathrm{sm} \) D) \( \frac{\sqrt{3}}{2} \mathrm{sm} \) E) \( \frac{\sqrt{3}}{3} \mathrm{sm} \) 35. Tarafi 6 sm olan kvadratın diaqonalını tapın. A) 12 sm B) \( 6 \sqrt{3} \mathrm{sm} \) C) \( 6 \sqrt{2} \mathrm{sm} \) D) 9 sm E) 8 sm 36. Kvadratın daxilinə çəkilmiş çevrənin radiusu 3 sm olarsa, perimetrini tapın. A) 36 sm B) 30 sm C) 24 sm D) 18 sm E) 12 sm 37. Tərəfi \( 6 \sqrt{2} \mathrm{sm} \) olan kvadratın xaricinə çkilmiş çevrənin radiusunu tapın. A) 8 sm B) \( 7,5 \mathrm{sm} \) C) 7 sm D) 6 sm E) \( 4,5 \mathrm{sm} \) 38. Düzgün 5-bucaqlının bir tərəfinə bitişik bucaqlarının tənbölənləri arasındakı kor bucağı tapin. A) \( 126^{\circ} \) B) \( 120^{\circ} \) C) \( 116^{\circ} \) D) \( 108^{\circ} \) E) \( 96^{\circ} \)
Geometría Azerbaijan Jan 23, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad