Pregunta
Eequence 1 Series
- Given:
1.) Determice the value(s) of
for which the series will converge (4)
1.2 Calculate the value of
2 Given the convergent geometrie senes.
;
2. 1 Letermine the possible valne(s) of
(3)
22 If
, cu’culate
1.) Determice the value(s) of
1.2 Calculate the value of
2. 1 Letermine the possible valne(s) of
Ask by Rogers Hamilton. in South Africa
Jan 23,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Respostas Simplificadas:
-
1.1. A série converge para
. -
1.2.
. -
2.1.
. -
2.2.
quando .
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
The series you’ve presented,
, can be recognized as a power series. To determine convergence, you can use the ratio test by analyzing the limit of the absolute value of the ratio of consecutive terms. This leads to
for the series to converge. So, the values of
for convergence are in the interval
.
Now, if
, you’re looking for values of
such that the sum converges to this number. The formula for the sum of an infinite geometric series is
. For the series you’ve presented, relate the first term and common ratio to find an appropriate
that satisfies this equation. Solving gives us the value(s) of
.
Next, shifting gears to the geometrical series
, we can see that for it to converge, the common ratio
between consecutive terms must fulfill
. After deducing that the common ratio is
(from
to
), we find that
.
Finally, substituting
into the convergence condition, we can calculate
using the sum formula for the infinite series. The sum converges to
. So, here you have the adventure in finding the values of
and calculating the series!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium