Pregunta
upstudy study bank question image url

What is the area of a regular 11-gon with a side length of 6 mm and an apothem of 10.2 mm ? Round to the nearest whole number. \( 363 \mathrm{~mm}^{2} \) 337 mm \( { }^{2} \) \( 312 \mathrm{~mm}^{2} \) \( 306 \mathrm{~mm}^{2} \)

Ask by Reed Lynch. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the regular 11-gon is 337 mm².

Solución

To find the area of a regular 11-gon (a polygon with 11 equal sides) with a given side length and apothem, you can use the following formula: \[ \text{Area} = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \] **Step-by-Step Calculation:** 1. **Calculate the Perimeter:** The perimeter (\( P \)) of a regular polygon is the product of the number of sides (\( n \)) and the length of one side (\( s \)). \[ P = n \times s = 11 \times 6\, \text{mm} = 66\, \text{mm} \] 2. **Use the Area Formula:** Plug the perimeter and the apothem (\( a \)) into the area formula. \[ \text{Area} = \frac{1}{2} \times 66\, \text{mm} \times 10.2\, \text{mm} = 33 \times 10.2\, \text{mm}^2 = 336.6\, \text{mm}^2 \] 3. **Round to the Nearest Whole Number:** \[ 336.6\, \text{mm}^2 \approx 337\, \text{mm}^2 \] **Final Answer:** **337 mm²**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the area of a regular 11-gon, you can use the formula: \[ \text{Area} = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \] First, calculate the perimeter of the 11-gon with a side length of 6 mm: \[ \text{Perimeter} = \text{side length} \times \text{number of sides} = 6 \, \text{mm} \times 11 = 66 \, \text{mm} \] Now, plug the perimeter and the apothem into the area formula: \[ \text{Area} = \frac{1}{2} \times 66 \, \text{mm} \times 10.2 \, \text{mm} = \frac{1}{2} \times 673.2 \, \text{mm}^{2} = 336.6 \, \text{mm}^{2} \] Rounding this to the nearest whole number, you get 337 mm². Can you believe that the ancient Greeks were the pioneers of regular polygons in mathematics? They studied the properties of shapes like the pentagon, hexagon, and even the elusive dodecagon! Their fascination laid the groundwork for geometry as we know it today, making math not just practical but also deeply beautiful. If you’re ever curious about the world of polygons and their many applications, consider diving into architecture or graphic design! Regular polygons are essential in both fields, from the exquisite tessellations of M.C. Escher to the geometric precision in modern buildings. Plus, creating art with these shapes can be a fantastic way to appreciate the math behind them while making something visually stunning.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad