Given the linear pattern: \( x ; y ; 83 ; 80 ; \)...... 3.2 .1 Calculate the values of \( x \) and \( y \). 3.2 .2 If \( x=89 \) and \( y=86 \), determine the general term of this pattern. 3.2 .3 Calculate the value of \( T_{1000} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve for \( x \) and \( y \) in the linear pattern \( x ; y ; 83 ; 80 ; \), we first identify the common difference. The difference between the known terms is \( 83 - 80 = 3 \), indicating a decrement of 3 for each step backward. Thus, we find: - \( y = 83 + 3 = 86 \) - \( x = 86 + 3 = 89 \) So, \( x = 89 \) and \( y = 86 \). To determine the general term, we have identified \( x = 89 \) and \( y = 86 \) corresponding to the first two terms. The common difference \( d = 80 - 83 = -3 \). The general term for an arithmetic sequence can be described by: \[ T_n = a + (n - 1) d \] Where \( a \) is the first term. Here, \( a = 89 \) and \( d = -3 \): \[ T_n = 89 + (n - 1)(-3) \] Now, to find \( T_{1000} \): \[ T_{1000} = 89 + (1000 - 1)(-3) \] \[ T_{1000} = 89 - 2997 \] \[ T_{1000} = -2908 \] So, \( T_{1000} = -2908 \).