Pregunta
upstudy study bank question image url

Given the linear pattern: \( x ; y ; 83 ; 80 ; \)...... 3.2 .1 Calculate the values of \( x \) and \( y \). 3.2 .2 If \( x=89 \) and \( y=86 \), determine the general term of this pattern. 3.2 .3 Calculate the value of \( T_{1000} \).

Ask by Deleon Wood. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 89 \) and \( y = 86 \). The general term is \( a_n = 92 - 3n \). The value of \( T_{1000} \) is \( -2908 \).

Solución

Let's solve each part of the problem step by step. --- ### **3.2.1 Calculate the values of \( x \) and \( y \).** **Given Sequence:** \( x ; y ; 83 ; 80 ; \ldots \) Since the pattern is linear, we can assume it's an **arithmetic sequence**, where the difference between consecutive terms is constant. **Let the common difference be \( d \).** 1. **Set up the equations based on the common difference:** - \( y - x = d \)   (1) - \( 83 - y = d \)   (2) - \( 80 - 83 = d \)   (3) 2. **Solve equation (3) to find \( d \):** \[ 80 - 83 = d \\ d = -3 \] 3. **Substitute \( d = -3 \) into equation (2) to find \( y \):** \[ 83 - y = -3 \\ y = 83 + 3 \\ y = 86 \] 4. **Substitute \( d = -3 \) and \( y = 86 \) into equation (1) to find \( x \):** \[ 86 - x = -3 \\ x = 86 + 3 \\ x = 89 \] **Answer:** \( x = 89 \) and \( y = 86 \). --- ### **3.2.2 Determine the general term of this pattern if \( x = 89 \) and \( y = 86 \).** **Given:** - First term, \( a_1 = 89 \) - Common difference, \( d = -3 \) **General Formula for an Arithmetic Sequence:** \[ a_n = a_1 + (n - 1) \times d \] **Substitute the known values:** \[ a_n = 89 + (n - 1)(-3) \\ a_n = 89 - 3(n - 1) \\ a_n = 89 - 3n + 3 \\ a_n = 92 - 3n \] **Answer:** The general term is \( a_n = 92 - 3n \). --- ### **3.2.3 Calculate the value of \( T_{1000} \).** **Using the general term derived:** \[ a_n = 92 - 3n \] **Find \( a_{1000} \):** \[ a_{1000} = 92 - 3 \times 1000 \\ a_{1000} = 92 - 3000 \\ a_{1000} = -2908 \] **Answer:** \( T_{1000} = -2908 \). ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve for \( x \) and \( y \) in the linear pattern \( x ; y ; 83 ; 80 ; \), we first identify the common difference. The difference between the known terms is \( 83 - 80 = 3 \), indicating a decrement of 3 for each step backward. Thus, we find: - \( y = 83 + 3 = 86 \) - \( x = 86 + 3 = 89 \) So, \( x = 89 \) and \( y = 86 \). To determine the general term, we have identified \( x = 89 \) and \( y = 86 \) corresponding to the first two terms. The common difference \( d = 80 - 83 = -3 \). The general term for an arithmetic sequence can be described by: \[ T_n = a + (n - 1) d \] Where \( a \) is the first term. Here, \( a = 89 \) and \( d = -3 \): \[ T_n = 89 + (n - 1)(-3) \] Now, to find \( T_{1000} \): \[ T_{1000} = 89 + (1000 - 1)(-3) \] \[ T_{1000} = 89 - 2997 \] \[ T_{1000} = -2908 \] So, \( T_{1000} = -2908 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad