Pregunta
upstudy study bank question image url

To pay for new machinery in 7 years, a company owner invests \( \$ 20,000 \) at \( 7.5 \% \) compounded quarterly. How much money will be available in 7 years? Round your answer to the nearest cent. In 7 years there will be \( \$ \square \) available.

Ask by Smith Davison. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

In 7 years, there will be \$33,645.22 available.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To calculate the future value of the investment using compound interest, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). Here, \( P = 20,000 \). - \( r \) is the annual interest rate (decimal). Here, \( r = 0.075 \). - \( n \) is the number of times that interest is compounded per year. For quarterly, \( n = 4 \). - \( t \) is the time the money is invested for, in years. Here, \( t = 7 \). Plugging in the values: \[ A = 20000 \left(1 + \frac{0.075}{4}\right)^{4 \cdot 7} \] \[ A = 20000 \left(1 + 0.01875\right)^{28} \] \[ A = 20000 \left(1.01875\right)^{28} \] \[ A = 20000 \left(1.6507\right) \] \[ A \approx 33014.00 \] In 7 years there will be \( \$ 33,014.00 \) available. The story of compound interest reaches back centuries! It has roots in Babylonian times, where the concept of earning interest on loans began to take shape. Fast forward to the modern era, and now we see this powerful financial principle shaping investments and retirement plans. Just imagine medieval merchants getting excited about compound interest – it’s like the original investment hack that keeps multiplying wealth! In real-world terms, understanding compound interest is essential for anyone looking to build wealth over time. Whether you’re saving for retirement, a house, or even that shiny new machine, having your money work for you is key. It’s like planting a tree today and enjoying the shade (and fruit) for years to come. So, what are you waiting for? Start investing and let compound interest do its magic!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad