Part 1 of 3 Model the pair of situations with exponential functions \( f \) and \( g \). Find the approximate value of \( x \) that makes \( f(x) \) \( =g(x) \). f. initial value of 700 decreasing at a rate of \( 15 \% \) \( g \) : initial value of 20 increasing at a rate of \( 15 \% \) Write the exponential function for \( f \). \( f(x)=\square \) (Use integers or decimals for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To model the situation for \( f \), since it has an initial value of 700 and is decreasing at a rate of 15%, the function can be expressed as: \( f(x) = 700(1 - 0.15)^x \) This simplifies to: \( f(x) = 700(0.85)^x \) Now, let's look at the function for \( g \). It has an initial value of 20 and is increasing at a rate of 15%. The function can be expressed as: \( g(x) = 20(1 + 0.15)^x \) This simplifies to: \( g(x) = 20(1.15)^x \) To find the approximate value of \( x \) that makes \( f(x) = g(x) \), you will set the two equations equal to each other: \( 700(0.85)^x = 20(1.15)^x \) Now, you can solve for \( x \) using logarithms or numerical methods to find the intersection point of the two functions.