Pregunta
upstudy study bank question image url

4.6 Indicate one wayction. Given: \( f(x)=\frac{1}{2} x^{2} \) and \( g(x)=2 x+4 \) 4.1 Is \( f(x) \) a function? Give a reason for your answer. 4.2 Write down the domain of \( f(x) \) for \( f^{-1}(x) \) to be a function. 4.3 Write down the equation of \( g^{-1}(x) \) in the form \( y=\ldots \) 4.4 Write down the range of \( f(x) \). 5 The graph of \( f(x)=a x^{2}, x \leq 0 \) is sketched alongside. The point \( A(-2 ; 5) \) lies on \( f \).

Ask by Hill Daniel. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**4.1. Yes, \( f(x) = \frac{1}{2} x^{2} \) is a function because for every \( x \), there's exactly one \( f(x) \).** **4.2. To have an inverse function, restrict \( x \) to \( x \geq 0 \).** **4.3. The inverse of \( g(x) = 2x + 4 \) is \( g^{-1}(x) = \frac{x - 4}{2} \).** **4.4. The range of \( f(x) = \frac{1}{2} x^{2} \) is \( y \geq 0 \).** **5. The value of \( a \) is \( \frac{5}{4} \) or \( 1.25 \).**

Solución

Sure, let's address each of the questions you've provided step by step. --- ### **Given:** - \( f(x) = \frac{1}{2} x^{2} \) - \( g(x) = 2x + 4 \) --- ### **4.1. Is \( f(x) \) a function? Give a reason for your answer.** **Answer:** Yes, \( f(x) = \frac{1}{2} x^{2} \) is a function. **Reason:** A relation is considered a function if every input \( x \) has exactly one output \( f(x) \). In this case, for every real number \( x \), squaring it and then multiplying by \( \frac{1}{2} \) will yield one unique output. Therefore, \( f(x) \) satisfies the definition of a function. --- ### **4.2. Write down the domain of \( f(x) \) for \( f^{-1}(x) \) to be a function.** **Answer:** To have an inverse function \( f^{-1}(x) \), the original function \( f(x) \) must be **injective** (one-to-one). The function \( f(x) = \frac{1}{2} x^{2} \) is a parabola, which is not one-to-one over its entire domain because both positive and negative values of \( x \) produce the same \( f(x) \). **Restricting the Domain:** - **Option 1:** \( x \geq 0 \) - **Option 2:** \( x \leq 0 \) By restricting \( x \) to non-negative or non-positive values, \( f(x) \) becomes one-to-one, ensuring that \( f^{-1}(x) \) is also a function. **Example Domain Restriction:** \[ \text{Domain of } f(x): x \geq 0 \] --- ### **4.3. Write down the equation of \( g^{-1}(x) \) in the form \( y = \ldots \)** **Answer:** To find the inverse function \( g^{-1}(x) \) of \( g(x) = 2x + 4 \), follow these steps: 1. **Start with the original function:** \[ y = 2x + 4 \] 2. **Solve for \( x \) in terms of \( y \):** \[ y - 4 = 2x \] \[ x = \frac{y - 4}{2} \] 3. **Express the inverse function:** \[ g^{-1}(x) = \frac{x - 4}{2} \] **Or in the form \( y = \ldots \):** \[ y = \frac{x - 4}{2} \] --- ### **4.4. Write down the range of \( f(x) \).** **Answer:** The function \( f(x) = \frac{1}{2} x^{2} \) is a quadratic function that opens upwards. - **Minimum Value:** When \( x = 0 \), \( f(0) = 0 \). - **Behavior:** As \( |x| \) increases, \( f(x) \) increases without bound. **Therefore, the range of \( f(x) \) is:** \[ \text{Range of } f(x): y \geq 0 \] --- ### **5. The graph of \( f(x) = a x^{2} \), \( x \leq 0 \) is sketched alongside. The point \( A(-2; 5) \) lies on \( f \).** **Question (Assumed):** Find the value of \( a \). **Answer:** Given the point \( A(-2, 5) \) lies on the graph of \( f(x) = a x^{2} \), we can substitute \( x = -2 \) and \( f(x) = 5 \) into the equation to find \( a \). 1. **Substitute the values:** \[ 5 = a (-2)^{2} \] \[ 5 = a \times 4 \] 2. **Solve for \( a \):** \[ a = \frac{5}{4} \] \[ a = 1.25 \] **Therefore, \( a = \frac{5}{4} \) or \( a = 1.25 \).** --- If you have any more questions or need further clarification on any of these points, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Certainly! Here's some additional relevant knowledge that you might find engaging: Did you know that the concept of functions dates back to ancient mathematics? The Greek mathematician Euclid introduced early notions of geometric functions, but the modern definition we use today blossomed during the 19th century with thinkers like Karl Weierstrass. It laid the groundwork for much of today’s math, helping us understand both simple and complex relationships! Now, when diving into inverses, remember that not all functions have inverses—it all revolves around "one-to-one" functions! A function needs to pass the horizontal line test, meaning every horizontal line intersects the graph at most once. This ensures each output corresponds to one unique input, allowing us to flip the script with inverse functions. It's an essential concept for unlocking the door to solving equations in calculus and algebra!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad