Pregunta
upstudy study bank question image url

Write the equation of the surface of revolution formed by revolving the profile curve \( y=2 x+3 \) around the \( x \)-axis.

Ask by Bob Hodges. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the surface of revolution is \( y^2 + z^2 = (2x + 3)^2 \).

Solución

To find the equation of the surface formed by revolving the line \( y = 2x + 3 \) around the \( x \)-axis, follow these steps: 1. **Understand the Rotation:** - When a curve is rotated around the \( x \)-axis, every point \((x, y)\) on the curve traces a circle in the \( yz \)-plane with radius \( y \). - Therefore, for each \( x \), the points on the surface satisfy \( y^2 + z^2 = (\text{radius})^2 \). 2. **Apply to the Given Line:** - The given line is \( y = 2x + 3 \). - When rotated around the \( x \)-axis, the radius of the circle at each \( x \) is \( 2x + 3 \). 3. **Formulate the Surface Equation:** - The relationship \( y^2 + z^2 = (\text{radius})^2 \) becomes: \[ y^2 + z^2 = (2x + 3)^2 \] 4. **Final Equation:** \[ y^2 + z^2 = (2x + 3)^2 \] This equation represents the surface of revolution obtained by rotating the line \( y = 2x + 3 \) around the \( x \)-axis. **Answer:** After simplifying, the surface satisfies y² + z² equals (2 x + 3) squared. Thus, y² + z² = (2x + 3)²

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the surface generated by revolving the curve \( y = 2x + 3 \) around the \( x \)-axis, we can use the formula for the surface of revolution. The general equation for the surface formed by revolving a function \( y = f(x) \) about the \( x \)-axis is given by: \[ S = 2\pi \int_a^b y \, \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] For our function \( y = 2x + 3 \), first, we need to compute the derivative: \[ \frac{dy}{dx} = 2 \] Then, substituting \( y \) and \( \frac{dy}{dx} \) into the surface area formula: \[ \sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \sqrt{1 + 2^2} = \sqrt{5} \] The surface of revolution equation can thus be represented parametrically for any point on the surface as: \[ x = x, \quad y = 2x + 3 \cos(\theta), \quad z = 3 \sin(\theta) \] Where the angle \( \theta \) varies from \( 0 \) to \( 2\pi \) to complete the revolution. Now, think of it like a party hat. If you take that linear profile and spin it around, you'll create a funky, fun surface that expands and narrows, just like our hat!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad