Pregunta
upstudy study bank question image url

Find the least common multiple. \( 5 j^{4}, 6 j^{5} \) Write your answer as a constant times a product of single variables raised to exponents.

Ask by Bond Perkins. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The least common multiple is \( 30 j^{5} \).

Solución

To find the least common multiple (LCM) of the expressions \( 5 j^{4} \) and \( 6 j^{5} \), we will follow these steps: 1. **Identify the coefficients**: The coefficients are \( 5 \) and \( 6 \). 2. **Find the LCM of the coefficients**: The LCM of \( 5 \) and \( 6 \) can be calculated by finding the smallest multiple that both numbers share. 3. **Identify the variable parts**: The variable parts are \( j^{4} \) and \( j^{5} \). 4. **Find the LCM of the variable parts**: The LCM of \( j^{4} \) and \( j^{5} \) is determined by taking the variable with the highest exponent. Now, let's calculate the LCM step by step. ### Step 1: LCM of the coefficients The prime factorization of the coefficients: - \( 5 = 5^1 \) - \( 6 = 2^1 \times 3^1 \) The LCM is found by taking the highest power of each prime: - For \( 2 \): \( 2^1 \) - For \( 3 \): \( 3^1 \) - For \( 5 \): \( 5^1 \) Thus, the LCM of the coefficients is: \[ \text{LCM}(5, 6) = 2^1 \times 3^1 \times 5^1 = 30 \] ### Step 2: LCM of the variable parts The variable parts are \( j^{4} \) and \( j^{5} \). The LCM is: \[ \text{LCM}(j^{4}, j^{5}) = j^{\max(4, 5)} = j^{5} \] ### Final LCM Combining both results, we have: \[ \text{LCM}(5 j^{4}, 6 j^{5}) = 30 j^{5} \] Thus, the least common multiple is: \[ \boxed{30 j^{5}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the least common multiple (LCM) of \( 5 j^{4} \) and \( 6 j^{5} \), we first identify the LCM of the coefficients and the LCM of the variable parts separately. The coefficients are \( 5 \) and \( 6 \). The LCM of \( 5 \) and \( 6 \) is \( 30 \). Now, for the variable part \( j^{4} \) and \( j^{5} \), we take the highest exponent, which is \( j^{5} \). Combining these, the least common multiple is: \[ 30 j^{5} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad